如圖,為測(cè)量山高M(jìn)N,選擇A和另一座的山頂C為測(cè)量觀測(cè)點(diǎn),從A點(diǎn)測(cè)得M點(diǎn)的仰角∠AMN=60°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°,已知山高BC=1000m,則山高M(jìn)N=
 
 m.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:△ABC中,由條件利用直角三角形中的邊角關(guān)系求得 AC;△AMC中,由條件利用正弦定理求得AM;Rt△AMN中,根據(jù)MN=AM•sin∠MAN,計(jì)算求得結(jié)果.
解答: 解:△ABC中,∵∠BAC=45°,∠ABC=90°,BC=1000,
∴AC=
100
sin45°
=1000
2

△AMC中,∵∠MAC=75°,∠MCA=60°,
∴∠AMC=45°,由正弦定理可得
AM
sin60°
=
1000
2
sin45°
,解得AM=1000
3

Rt△AMN中,MN=AM•sin∠MAN=1000
3
×sin60°=1500(m),
故答案為:1500.
點(diǎn)評(píng):本題主要考查正弦定理、直角三角形中的邊角關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y滿足約束條件x≥0,y≥0,2x+y≤4,則
y+4
x+2
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解下列不等式:
(1)x2+2x-3>0;    
(2)
3x-1
2-x
>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn)分別為F1、F2,橢圓上一點(diǎn)P,若|PF2|-|PF1|的最大值為2,且當(dāng)P,F(xiàn)1,F(xiàn)2能構(gòu)成三角形時(shí),其周長(zhǎng)為6,則橢圓方程為(  )
A、
x2
4
+
y2
3
=1
B、
x2
6
+
y2
4
=1
C、
x2
9
+
y2
6
=1
D、
x2
4
+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知∠A、∠B、∠C是△ABC的三個(gè)內(nèi)角,且滿足2sinA=
3
sinC-sinB
(Ⅰ)求∠A的取值范圍;
(Ⅱ)若∠A取最大值時(shí)∠B=
π
6
,且BC邊上的中線AM的長(zhǎng)為
7
,求此時(shí)△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市一水電站的年發(fā)電量y(單位:億千瓦時(shí))與該市的年降雨量x(單位:毫米)有如下統(tǒng)計(jì)數(shù)據(jù):
2010年2011年2012年2013年2014年
降雨量x(毫米)15001400190016002100
發(fā)電量y(億千瓦時(shí))7.47.09.27.910.0
(Ⅰ)若從統(tǒng)計(jì)的5年中任取2年,求這2年的發(fā)電量都低于8.0(億千瓦時(shí))的概率;
(Ⅱ)由表中數(shù)據(jù)求得線性回歸方程為
?
y
=0.004x+
?
a
.該水電站計(jì)劃2015年的發(fā)電量不低于9.0億千瓦時(shí),現(xiàn)由氣象部門獲悉2015年的降雨量約為1800毫米,請(qǐng)你預(yù)測(cè)2015年能否完成發(fā)電任務(wù),若不能,缺口約為多少億千瓦時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在平面直角坐標(biāo)系中有A(4,6)、B(-2,-2)、C(1,7)、D(6,2)四點(diǎn),問(wèn)這四點(diǎn)是否在同一個(gè)圓上?請(qǐng)說(shuō)明理由;若在,請(qǐng)問(wèn)點(diǎn)E(1,-3)是否與這四點(diǎn)共圓?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•4x+b•2x+c,其中ac<0,給出下列關(guān)于函數(shù)f(x)的零點(diǎn)的結(jié)論:①存在兩個(gè)同號(hào)的零點(diǎn).②存在兩個(gè)異號(hào)的零點(diǎn).③僅存在一個(gè)零點(diǎn),其中錯(cuò)誤結(jié)論的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等比數(shù)列{an}中,Tn表示前n項(xiàng)的積,若T7=1,則( 。
A、a2=1
B、a3=1
C、a4=1
D、a5=1

查看答案和解析>>

同步練習(xí)冊(cè)答案