【題目】由于疫情影響,今年我們學(xué)校開展線上教學(xué),高一年級某班班主任為了了解學(xué)生上網(wǎng)學(xué)習(xí)時(shí)間,對本班40名學(xué)生某天上網(wǎng)學(xué)習(xí)時(shí)間進(jìn)行了調(diào)查,將數(shù)據(jù)(取整數(shù))整理后,繪制出如圖所示頻率分布直方圖,已知從左到右各個(gè)小組的頻率分別是0.15,0.25,0.35,0.20,0.05,則根據(jù)直方圖所提供的信息.
(1)這一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生有多少人?
(2)這40位同學(xué)的線上平均學(xué)習(xí)時(shí)間是多少?
(3)如果只用這40名學(xué)生這一天上網(wǎng)學(xué)習(xí)時(shí)間作為樣本去推斷該校高一年級全體學(xué)生該天的上網(wǎng)學(xué)習(xí)時(shí)間,這樣推斷是否合理?為什么?
【答案】(1)14人(2)104.9分鐘(3)這樣推斷不合理.見解析
【解析】
(1)根據(jù)頻數(shù)樣本容量頻率計(jì)算即可;
(2)根據(jù)每組的中值與頻率積的和即可估計(jì)總體的平均值;
(3)根據(jù)樣本的構(gòu)成來分析,不夠全面,所以推斷不合理.
(1)因?yàn)轭l數(shù)樣本容量頻率,一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生所占頻率為0.35,
所以一天上網(wǎng)學(xué)習(xí)時(shí)間在分鐘之間的學(xué)生人數(shù)為(人)
(2)40位同學(xué)的線上學(xué)習(xí)時(shí)間為:
分鐘
(3)因?yàn)樵摌颖镜倪x取只在高一某班,不具有代表性,所以這樣推斷不合理.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,橢圓的方程為(為參數(shù));以原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求橢圓的極坐標(biāo)方程,及圓的直角坐標(biāo)方程;
(2)若動(dòng)點(diǎn)在橢圓上,動(dòng)點(diǎn)在圓上,求的最大值;
(3)若射線分別與橢圓交于點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,直線:,直線:.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.
(1)求直線,的直角坐標(biāo)方程以及曲線的參數(shù)方程;
(2)已知直線與曲線交于,兩點(diǎn),直線與曲線交于,兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)z1是虛數(shù),z2=z1是實(shí)數(shù),且﹣1≤z2≤1.
(1)求|z1|的值以及z1的實(shí)部的取值范圍;
(2)若ω,求證ω為純虛數(shù);
(3)求z2﹣ω2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若恒成立,試確定實(shí)數(shù)的取值范圍;
(3)證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司近年來特別注重創(chuàng)新產(chǎn)品的研發(fā),為了研究年研發(fā)經(jīng)費(fèi)(單位:萬元)對年創(chuàng)新產(chǎn)品銷售額(單位:十萬元)的影響,對近10年的研發(fā)經(jīng)費(fèi)與年創(chuàng)新產(chǎn)品銷售額(其中)的數(shù)據(jù)作了初步處理,得到如圖的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
其中,,,,
.現(xiàn)擬定關(guān)于的回歸方程為.
(1)求,的值(結(jié)果精確到);
(2)根據(jù)擬定的回歸方程,預(yù)測當(dāng)研發(fā)經(jīng)費(fèi)為萬元時(shí),年創(chuàng)新產(chǎn)品銷售額是多少?
參考公式:
求線性回歸方程系數(shù)公式 :,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是邊長為2的正方形,平面 為等腰直角三角形,,為的中點(diǎn),為的中點(diǎn).
(1)求異面直線與所成角的余弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, 是橢圓的左右焦點(diǎn), 為橢圓的上頂點(diǎn),點(diǎn)在橢圓上,直線與軸的交點(diǎn)為, 為坐標(biāo)原點(diǎn),且, .
(1)求橢圓的方程;
(2)過點(diǎn)作兩條互相垂直的直線分別與橢圓交于, 兩點(diǎn)(異于點(diǎn)),證明:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com