如圖,正方形ABCD和三角形ACE所在的平面互相垂直,EF∥BD,AB=EF.
(1)求證:BF∥平面ACE;
(2)求證:BF⊥BD.
(1)詳見解析, (2) 詳見解析.

試題分析:(1) 證明線面平行,需先證線線平行. 正方形ABCD中,BO=AB,又因為AB=EF,∴BO=EF,又因為EF∥BD,∴EFBO是平行四邊形,∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,∴BF∥平面ACE.列線面平行判定定理的條件必須要全面. (2)證明線線垂直,一般利用線面垂直進(jìn)行轉(zhuǎn)化.條件為面面垂直,所以先由面面垂直性質(zhì)定理轉(zhuǎn)化為線面垂直:正方形ABCD中,AC⊥BD,又因為正方形ABCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,∴BD⊥平面ACE,∵EO?平面ACE,∴BD⊥EO,∵EO∥BF,∴BF⊥BD.
證明 (1)AC與BD交于O點,連接EO.
正方形ABCD中,BO=AB,又因為AB=EF,
∴BO=EF,又因為EF∥BD,
∴EFBO是平行四邊形,
∴BF∥EO,又∵BF?平面ACE,EO?平面ACE,
∴BF∥平面ACE            7分
(2)正方形ABCD中,AC⊥BD,又因為正方形ABCD和三角形ACE所在的平面互相垂直,BD?平面ABCD,平面ABCD∩平面ACE=AC,
∴BD⊥平面ACE,∵EO?平面ACE,
∴BD⊥EO,∵EO∥BF,∴BF⊥BD.                  14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖3,已知二面角的大小為,菱形在面內(nèi),兩點在棱上,的中點,,垂足為.
(1)證明:平面;
(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長方體中,,G是上的動點。
(l)求證:平面ADG
(2)判斷與平面ADG的位置關(guān)系,并給出證明;
(3)若G是的中點,求二面角G-AD-C的大;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直四棱柱的底面為正方形,,為棱的中點.

(1)求證:;
(2)設(shè)中點,為棱上一點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以下四個命題中,正確的有幾個(   )
①直線a,b與平面a所成角相等,則a∥b;②兩直線a∥b,直線a∥平面a,則必有b∥平面a;③ 一直線與平面的一斜線在平面a內(nèi)的射影垂直,則該直線必與斜線垂直;④兩點A,B與平面a的距離相等,則直線AB∥平面a  
A 0個  B 1個 C 2個     D 3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知α,β表示兩個不同的平面,m是一條直線且m?α,則:“α⊥β”是“m⊥β”的(  )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知m、n為兩條不同的直線,、為兩個不同的平面,下列命題中正確的是(     )
A.若,m,則m
B.若mm,則
C.若m,則m
D.若m,mn,則n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面與平面平行的條件可以是(  )
A.內(nèi)有無窮多條直線與平行B.直線a//,a//
C.直線a,直線b,且a//,b//D.內(nèi)的任何直線都與平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不重合的直線m、l和平面,且.給出下列命題:
①若,則
②若,則;
③若,則;
④若,則,
其中正確命題的個數(shù)是(   )
A.1B.2C.3 D.4

查看答案和解析>>

同步練習(xí)冊答案