【題目】為了保障全國第四次經(jīng)濟(jì)普查順利進(jìn)行,國家統(tǒng)計(jì)局從東部選擇江蘇, 從中部選擇河北. 湖北,從西部選擇寧夏, 從直轄市中選擇重慶作為國家綜合試點(diǎn)地區(qū),然后再逐級確定普查區(qū)域,直到基層的普查小區(qū).在普查過程中首先要進(jìn)行宣傳培訓(xùn),然后確定對象,最后入戶登記. 由于種種情況可能會導(dǎo)致入戶登記不夠順利,這為正式普查提供了寶貴的試點(diǎn)經(jīng)驗(yàn). 在某普查小區(qū),共有 50 家企事業(yè)單位,150 家個體經(jīng)營戶,普查情況如下表所示:
普查對象類別 | 順利 | 不順利 | 合計(jì) |
企事業(yè)單位 | 40 | 10 | 50 |
個體經(jīng)營戶 | 100 | 50 | 150 |
合計(jì) | 140 | 60 | 200 |
(1)寫出選擇 5 個國家綜合試點(diǎn)地區(qū)采用的抽樣方法;
(2)根據(jù)列聯(lián)表判斷是否有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”;
(3)以頻率作為概率, 某普查小組從該小區(qū)隨機(jī)選擇 1 家企事業(yè)單位,3 家個體經(jīng)營戶作為普查對象,入戶登記順利的對象數(shù)記為, 寫出的分布列,并求的期望值.
附:
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.88 |
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
(1)分層抽樣,簡單隨機(jī)抽樣均可;(2)利用聯(lián)列表求出,然后判斷即可;(3)推出可取0,1,2,3,4.求解概率,然后求解分布列,得到期望即可.
(1)分層抽樣,簡單隨機(jī)抽樣(抽簽亦可).
(2)將列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算得
,
所以,有的把握認(rèn)為“此普查小區(qū)的入戶登記是否順利與普查對象的類別有關(guān)”.
(3)以頻率作為概率,從該小區(qū)隨機(jī)選擇1家企事業(yè)單位作為普查對象,入戶登記
順利的概率為,隨機(jī)選擇1家個體經(jīng)營戶作為普查對象,入戶登記順利的概率為.
可取0,1,2,3,4.
,
,
,
,
.
的分布列為:
| 0 | 1 | 2 | 3 | 4 |
|
|
|
|
|
|
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,,且的最小值為,的圖像的相鄰兩條對稱軸之間的距離為.
(1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;
(2)在中,角,,所對的邊分別為,,.且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集I={1,2,3,4,5,6},集合A,B都是I的子集,若AB={1,3,5},則稱A,B為“理想配集”,記作(A,B),問這樣的“理想配集”(A,B)共有( )
A. 7個 B. 8個 C. 27個 D. 28個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是橢圓上的一點(diǎn),從原點(diǎn)向
圓作兩條切線,分別交橢圓于點(diǎn).
(1)若點(diǎn)在第一象限,且直線互相垂直,求圓的方程;
(2)若直線的斜率存在,并記為,求的值;
(3)試問是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)若不等式對任意恒成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中,,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,邊,,所在直線的方程分別為,,.
(1)求邊上的高所在的直線方程;
(2)若圓過直線上一點(diǎn)及點(diǎn),當(dāng)圓面積最小時,求其標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個科目,為了了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的n名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目且只能選擇一個科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?
說明你的理由;
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)圖書館舉行高中志愿者檢索圖書的比賽,從高一、高二兩個年級各抽取10名志愿者參賽。在規(guī)定時間內(nèi),他們檢索到的圖書冊數(shù)的莖葉圖如圖所示,規(guī)定冊數(shù)不小于20的為優(yōu)秀.
(Ⅰ) 從兩個年級的參賽志愿者中各抽取兩人,求抽取的4人中至少一人優(yōu)秀的概率;
(Ⅱ) 從高一10名志愿者中抽取一人,高二10名志愿者中抽取兩人,3人中優(yōu)秀人數(shù)記為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com