已知橢圓)的離心率,左、右焦點(diǎn)分別為,點(diǎn),點(diǎn)在線段的中垂線上.

(1)求橢圓的方程;

(2)設(shè)直線:與橢圓交于、兩點(diǎn),直線的傾斜角分別為、,且,求證:直線經(jīng)過(guò)定點(diǎn),并求該定點(diǎn)的坐標(biāo)

 

【答案】

(1)設(shè)橢圓的左、右焦點(diǎn)分別為、,

∵點(diǎn)在線段的中垂線上,∴,因此

解得:,又∵,∴,

故所求的橢圓方程為: 

(2)依題意,消去,得:

設(shè)、,則 

,依題意得:, 即:

,化簡(jiǎn)得:

,整理得: 

∴直線的方程為,因此直線經(jīng)過(guò)定點(diǎn),該定點(diǎn)坐標(biāo)為

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•淮南二模)已知橢圓C:
x2
a2
+
y2
b2
=1,(a>b>0)與雙曲4x2-
4
3
y2=1有相同的焦點(diǎn),且橢C的離心e=
1
2
,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓),過(guò)橢圓中心O作互相垂直的兩條弦AC、BD,設(shè)點(diǎn)A、B的離心角分別為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(山東卷解析版) 題型:選擇題

已知橢圓的離心學(xué)率為.雙曲線的漸近線與橢圓有四個(gè)交點(diǎn),以這四個(gè)焦點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓的方程為

(A)     (B) 

(C)     (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省高二第一學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:解答題

已知橢圓E的下焦點(diǎn)為、上焦點(diǎn)為,其離心 率。過(guò)焦點(diǎn)F2且與軸不垂直的直線l交橢圓于A、B兩點(diǎn)。

(1)求實(shí)數(shù)的值;  

(2)求DABOO為原點(diǎn))面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽省淮北市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓C:+=1,(a>b>0)與雙曲4x2-y2=1有相同的焦點(diǎn),且橢C的離心e=,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
(1)求橢圓的方程;
(2)若直MA交直x=4于點(diǎn)P,過(guò)P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
(3)求點(diǎn)P在直線MB上射R的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案