分析 利用同角三角函數(shù)間的基本關(guān)系求出sin(α-β)與cos(α+β)的值,所求式子角度變形后利用兩角和與差的余弦函數(shù)公式化簡(jiǎn),將各自的值代入計(jì)算即可求出值.
解答 解:∵$\frac{π}{2}$<α-β<π,$\frac{3π}{2}$≤α+β<2π,
∵cos(α-β)=-$\frac{4}{5}$,sin(α+β)=-$\frac{3}{5}$,
∴sin(α-β)=$\sqrt{1-co{s}^{2}(α-β)}$=$\sqrt{1-(-\frac{4}{5})^{2}}$=$\frac{3}{5}$,cos(α+β)=$\sqrt{1-si{n}^{2}(α+β)}$=$\sqrt{1-(-\frac{3}{5})^{2}}$=$\frac{4}{5}$,
則cos2β=cos[(α-β)-(α+β)]=cos(α-β)cos(α+β)+sin(α-β)sin(α+β)=(-$\frac{4}{5}$)×$\frac{4}{5}$+$\frac{3}{5}$×(-$\frac{3}{5}$)=-1.
點(diǎn)評(píng) 此題考查了二倍角的余弦函數(shù)公式,以及兩角和與差的余弦函數(shù)公式,熟練掌握公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-4y+13=0 | B. | 4y-3x+13=0 | C. | 3x-4y+13=0或x=1 | D. | 4y-3x+13=0或x=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2 | B. | f(x)=1,g(x)=x0 | ||
C. | f(x)=2x-1,f(t)=2t-1 | D. | f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com