設(shè){an}是公比為正數(shù)的等比數(shù)列,若,則數(shù)列{an}前7項(xiàng)的和為

A.63                          B.64                          C.127                        D.128

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有以下命題:設(shè)an1,an2,…anm是公差為d的等差數(shù)列{an}中任意m項(xiàng),若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),則
an1+an2+…+anm
m
=ap+
r
m
d;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等差平均項(xiàng).
(1)已知等差數(shù)列{an}的通項(xiàng)公式為an=2n,根據(jù)上述命題,則a1,a3,a10,a18的等差平均項(xiàng)為:
 
;
(2)將上述真命題推廣到各項(xiàng)為正實(shí)數(shù)的等比數(shù)列中:設(shè)an1,an2,…anm是公比為q的等比數(shù)列{an}中任意m項(xiàng),若
n1+n2+…+nm
m
=p+
r
m
(p∈N*,r∈N且r<m),則
 
;特別地,當(dāng)r=0時(shí),稱ap為an1,an2,…anm的等比平均項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的首項(xiàng)為1,其前n項(xiàng)和為Sn,{bn}是公比為正整數(shù)的等比數(shù)列,其首項(xiàng)為3,前n項(xiàng)和為Tn.若a3+b3=17,T3-S3=12.
(1)求{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an+
23
bn}的前n項(xiàng)和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=3,前n項(xiàng)和為Sn,等比數(shù)列{bn}中,b1=1,且b2•S2=16,{ban}是公比為4的等比數(shù)列
(1)求an與bn
(2)設(shè)Cn=
1
S1
+
1
S2
+
1
S2
+…+
1
Sn
,若對(duì)任意正整數(shù)n,當(dāng)m∈[-1,1]時(shí),不等式t2-2mt+
3
4
>Cn恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等比數(shù)列{an}的首項(xiàng)為a1=2,公比為q(q為正整數(shù)),且滿足3a3是8a1與a5的等差中項(xiàng);數(shù)列{an}滿足2n2-(t+bn)n+
32
bn=0(t∈R,n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)試確定實(shí)數(shù)t的值,使得數(shù)列{bn}為等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:a1=1,a2=a(a>0).正項(xiàng)數(shù)列{bn}滿足bn2=anan+1(n∈N*).若 {bn}是公比為
2
的等比數(shù)列
(1)求{an}的通項(xiàng)公式;
(2)若a=
2
,Sn為{an}的前n項(xiàng)和,記Tn=
17Sn-S2n
an+1
設(shè)Tn0為數(shù)列{Tn}的最大項(xiàng),求n0

查看答案和解析>>

同步練習(xí)冊(cè)答案