數(shù)列的前項和為,,,等差數(shù)列滿足,
(1)求數(shù)列,數(shù)列的通項公式;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍.

(1);(2)

解析試題分析:(1)根據(jù)條件等差數(shù)列滿足,,將其轉化為等差數(shù)列基本量的求解,從而可以得到的通項公式,根據(jù)可將條件中的變形得到,驗證此遞推公式當n=1時也成立,可得到是等比數(shù)列,從而得到的通項公式;
(2)根據(jù)(1)中所求得的通項公式,題中的不等式可轉化為,從而問題等價于求,可求得當n=3時,為最大項,從而可以得到
(1)設等差數(shù)列公差為,則,
解得,, (2分)
時,,則
是以1為首項3為公比的等比數(shù)列,則.     (6分);
(2)由(1)知,,原不等式可化為     (8分)
若對任意的恒成立,,問題轉化為求數(shù)列的最大項
,則,解得,所以,     (10分)
的最大項為第項,,所以實數(shù)的取值范圍.     (12分).
考點:1、數(shù)列的通項公式;2、恒成立問題的處理方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

在數(shù)列中,如果對任意的,都有為常數(shù)),則稱數(shù)列為比等差數(shù)列,稱為比公差.現(xiàn)給出以下命題:①若數(shù)列滿足,,),則該數(shù)列不是比等差數(shù)列;②若數(shù)列滿足,則數(shù)列是比等差數(shù)列,且比公差;③等比數(shù)列一定是比等差數(shù)列,等差數(shù)列不一定是比等差數(shù)列;④若是等差數(shù)列,是等比數(shù)列,則數(shù)列是比等差數(shù)列.
其中所有真命題的序號是_________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足.
(1)若數(shù)列是等差數(shù)列,求其公差的值;
(2)若數(shù)列的首項,求數(shù)列的前100項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足:.
(1)求數(shù)列的通項公式;
(2)令,數(shù)列的前項和為,求證:時,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(14分)(2011•廣東)設b>0,數(shù)列{an}滿足a1=b,an=(n≥2)
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,2an≤bn+1+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的首項,公差,且第項、第項、第項分別是等比數(shù)列的第項、第項、第項.
(1)求數(shù)列,的通項公式;
(2)設數(shù)列,均有成立,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設數(shù)列是首項為,公差為的等差數(shù)列,其前項和為,且成等差數(shù)列.
(1)求數(shù)列的通項公式;
(2)記的前項和為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列,公差,前n項和為,,且滿足成等比數(shù)列.
(I)求的通項公式;
(II)設,求數(shù)列的前項和的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的公差大于零,且是方程的兩個根;各項均為正數(shù)的等比數(shù)列的前項和為,且滿足,
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前n項和.

查看答案和解析>>

同步練習冊答案