【題目】已知點△三頂點坐標(biāo)分別是,
(1)求A到BC邊的距離d;
(2)求證AB邊上任意一點P到直線AC,BC的距離之和等于d.
【答案】(1);(2)證明見解析.
【解析】
(1)先由BC兩點坐標(biāo)求出過點B和C的直線方程,然后由點到直線的距離公式即可求得答案;
(2)由AC兩點坐標(biāo)求出過點A和C的直線方程,然后由點到直線的距離公式分別求出P點到直線AC和BC的距離,再求和即可得出結(jié)果進而證明結(jié)論.
(1)由題意坐標(biāo)B(1,0),C(0,2)所以由截距式可得直線BC的方程為:,即,由點到直線的距離公式可得A到BC邊的距離;
(2)設(shè),∵直線AC的方程是,即-
∴則P到直線AC的距離為
則P到直線BC的距離為,∴.
即AB邊上任意一點P到直線AC,BC的距離之和等于.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程: (為參數(shù)),曲線的參數(shù)方程: (為參數(shù)),且直線交曲線于兩點.
(1)將曲線的參數(shù)方程化為普通方程,并求時, 的長度;
(2)巳知點,求當(dāng)直線傾斜角變化時, 的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,為左焦點,為上頂點,為右頂點,若,拋物線的頂點在坐標(biāo)原點,焦點為.
(1)求的標(biāo)準(zhǔn)方程;
(2)是否存在過點的直線,與和交點分別是和,使得?如果存在,求出直線的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形, , .
(1)證明: ;
(2)若在平面內(nèi)的正投影為,求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,PA垂直于圓O所在的平面,M是圓周上任意一點,AN⊥PM,垂足為N , AE⊥PB,垂足為E .
(1)求證:平面PAM⊥平面PBM.
(2)求證:是二面角A-PB-M的平面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量,,則下列敘述錯誤的是( )
A.若時,則與的夾角為鈍角
B.的最小值為
C.與共線的單位向量只有一個為
D.若,則或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 設(shè)函數(shù)f(x)=(x-1)2+bln x,其中b為常數(shù).
(1)當(dāng)b>時,判斷函數(shù)f(x)在定義域上的單調(diào)性;
(2)若函數(shù)f(x)有極值點,求b的取值范圍及f(x)的極值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩臺機床同時生產(chǎn)一種零件,其質(zhì)量按測試指標(biāo)劃分:指標(biāo)大于或等于100為優(yōu)品,大于等于90且小于100為合格品,小于90為次品,現(xiàn)隨機抽取這兩臺車床生產(chǎn)的零件各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標(biāo) | [85,90) | [90,95) | [95,100) | [100,105) | [105,110) |
機床甲 | 8 | 12 | 40 | 32 | 8 |
機床乙 | 7 | 18 | 40 | 29 | 6 |
(1)試分別估計甲機床、乙機床生產(chǎn)的零件為優(yōu)品的概率;
(2)甲機床生產(chǎn)一件零件,若是優(yōu)品可盈利160元,合格品可盈利100元,次品則虧損20元;假設(shè)甲機床某天生產(chǎn)50件零件,請估計甲機床該天的日利潤(單位:元);
(3)從甲、乙機床生產(chǎn)的零件指標(biāo)在[90,95)內(nèi)的零件中,采用分層抽樣的方法抽取5件,從這5件中任選2件進行質(zhì)量分析,求這2件都是乙機床生產(chǎn)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com