如果對于函數(shù)f(x)的定義域內(nèi)任意兩個自變量的值x1,x2,當(dāng)x1<x2時,都有f(x1)≤f(x2)且存在兩個不相等的自變量m1,m2,使得f(m1)=f(m2),則稱f(x)為定義域上的不嚴(yán)格的增函數(shù).已知函數(shù)g(x)的定義域、值域分別為A,B,A={1,2,3},B⊆A且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的函數(shù)g(x)共有
9
9
個.
分析:根據(jù)本題所給的定義,以及函數(shù)的定義對所給的函數(shù)進(jìn)行討論,解決此題要分三類,三對一的對應(yīng),二對一的對應(yīng),一對一的對應(yīng)三種來研究,進(jìn)而得到答案.
解答:解:由題意,若函數(shù)g(x)是三對一的對應(yīng),則有{1,2,3}對應(yīng)1;{1,2,3}對應(yīng)2;{1,2,3}對應(yīng)3三種方式,故此類函數(shù)有三種.
若函數(shù)是二對一的對應(yīng),則有{1,2}對1,3對2;{1,2}對1,3對3,共有兩種;
 1對1,{2,3}對2;1對1,{2,3}對3,有兩種;1對2,{2,3}對3,共有一種.
若函數(shù)是一對一的對應(yīng),則1對1,2對2,3對3,共一種.
綜上,這樣的g(x)共有3+2+2+1+1=9種,
故答案為 9.
點(diǎn)評:本題考查函數(shù)單調(diào)性的性質(zhì),求解本題的關(guān)鍵是正確理解所給的定義,結(jié)合函數(shù)定義中對應(yīng)的思想,對可能的函數(shù)進(jìn)行列舉,得出可能函數(shù)的種數(shù),本題比較抽象,解題時要注意對其情況分類討論,不重不漏,本題易因?yàn)榉诸惒磺,或者考慮情況不嚴(yán)密出錯,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果對于函數(shù)f(x)的定義域內(nèi)任意的x1,x2,都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
(1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”;
(2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對于任意
的x1,x2∈[0,1],都有|f(x1)-f(x2)|≤
12
成立.
(3)設(shè)a、m為實(shí)常數(shù),m>0.若f(x)=alnx是區(qū)間[m,+∞)上的“平緩函數(shù)”,試估計a的取值范圍(用m表示,不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、如果對于函數(shù)f(x)定義域內(nèi)任意的兩個自變量的值x1,x2,當(dāng)x1<x2時,都有f(x1)≤f(x2),且存在兩個不相等的自變量值y1,y2,使得f(y1)=f(y2),就稱f(x)為定義域上的不嚴(yán)格的增函數(shù),已知函數(shù)g(x)的定義域、值域分別為A、B,A=1,2,3,B⊆A,且g(x)為定義域A上的不嚴(yán)格的增函數(shù),那么這樣的g(x)共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對于函數(shù)f(x)的定義域內(nèi)的任意x1,x2都有|f(x1)-f(x2)|≤|x1-x2|成立,那么就稱函數(shù)f(x)是定義域上的“平緩函數(shù)”.
(1)判斷函數(shù)f(x)=x2-x,x∈[0,1]是否是“平緩函數(shù)”?
(2)若函數(shù)f(x)是閉區(qū)間[0,1]上的“平緩函數(shù)”,且f(0)=f(1).證明:對任意的x,x2∈[0,1]都有|f(x1)-f(x2)|≤
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果對于函數(shù)f(x)定義域內(nèi)任意的x,都有f(x)≥M(M為常數(shù)),稱M為f(x)的下界,下界M中的最大值叫做f(x)的下確界.定義在[1,e]上的函數(shù)f(x)=2x-1+lnx的下確界M=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.如果對于函數(shù)f(x)的所有上界中有一個最小的上界,就稱其為函數(shù)f(x)的上確界.已知函數(shù)f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)當(dāng)a=1時,求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍;
(3)若m>0,求函數(shù)g(x)在[0,1]上的上確界T(m).

查看答案和解析>>

同步練習(xí)冊答案