已知曲線C1的參數(shù)方程為
x=-2+
10
cosθ
y=
10
sinθ
為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ,問(wèn)曲線C1,C2是否相交,若相交請(qǐng)求出公共弦的方程,若不相交,請(qǐng)說(shuō)明理由.
考點(diǎn):參數(shù)方程化成普通方程,簡(jiǎn)單曲線的極坐標(biāo)方程
專題:坐標(biāo)系和參數(shù)方程
分析:首先將兩個(gè)曲線方程化為普通方程,然后由普通方程得到 曲線為圓,由圓心距與半徑的關(guān)系判定圓的位置關(guān)系,兩圓的方程相減得到公共弦的方程.
解答: 解:由參數(shù)方程為
x=-2+
10
cosθ
y=
10
sinθ
為參數(shù)),消去θ,得曲線C1的普通方程(x+2)2+y2=10①
由ρ=2cosθ+6sinθ,得ρ2=2ρcosθ+6ρsinθ,
∴曲線C2是的普通方程為(x-1)2+(y-3)2=10②
所以曲線C1,C2是圓,并且圓心分別為(-2,0),(1,3),
∴|C1C2|=
(-2-1)2+(0-3)2
=3
2
<2
10
,
∴兩圓相交,相交時(shí)公共弦的方程為①-②得x+y=1.
點(diǎn)評(píng):本題考查了參數(shù)方程化為普通方程,以及兩圓的公共弦所在的直線方程求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市2012年新建住房320萬(wàn)平方米.其中有80萬(wàn)平方米的經(jīng)濟(jì)適用房.預(yù)計(jì)在今后若干年內(nèi),該市每年新建住房面積平均比上一年增長(zhǎng)5%,另外,每年新建住房中,經(jīng)濟(jì)適用房的面積平均比上一年增加20萬(wàn)平方米,那么,到哪一年底:
(Ⅰ)該市歷年所建經(jīng)濟(jì)適用房的累積面積(以2012年為累積的第一年)將首次不少于1440萬(wàn)平方米?
(Ⅱ)當(dāng)年建造的經(jīng)濟(jì)適用房的面積占該年建造住房面積的比例首次大于50%?(注:可利用公式(1+a)n≈1+na(0<a<1,n∈N*)估算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a-c=
6
6
b,sinB=
6
sinC,求cosA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在二項(xiàng)式(2x+1)6的展開(kāi)式中,系數(shù)最大項(xiàng)的系數(shù)是( 。
A、20B、160
C、240D、192

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,|
AB
|=3,|
AC
|=2,點(diǎn)D滿足2
BD
=3
DC
,∠BAC=60°,則
AD
BC
=(  )
A、-
8
5
B、
8
5
C、-
9
5
D、
9
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)M在棱AB上,且PB,點(diǎn)AM=
1
3
,P是平面ABCD上的動(dòng)點(diǎn),且動(dòng)點(diǎn)P到直線A1D1的距離與點(diǎn)P到點(diǎn)M的距離的平方差為1,則動(dòng)點(diǎn)P的軌跡是( 。
A、圓B、拋物線C、雙曲線D、橢圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程(2x+y-4)(x-y-2)=0表示的圖形與直線y=2圍成的三角形區(qū)域(包括邊界)為M,點(diǎn)P(x,y)為M內(nèi)的一個(gè)動(dòng)點(diǎn),則目標(biāo)函數(shù)z=x+y-2的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面α∥平面β,直線m?平面α,那么直線m與平面β 的關(guān)系是(  )
A、直線m在平面β內(nèi)
B、直線m與平面β相交但不垂直
C、直線m與平面β垂直
D、直線m與平面β平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某三棱錐的三視圖如圖所示,且三個(gè)三角形均為直角三角形,則xy的最大值為( 。
A、32
B、32
7
C、64
D、64
7

查看答案和解析>>

同步練習(xí)冊(cè)答案