若f(x)=(m2-1)x2+(m-1)x+(n+2)為奇函數(shù),則m,n的值為( 。
A、m=1,n=2
B、m=-1,n=2
C、m=±1,n=-2
D、m=±1,n∈R
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)奇函數(shù)的定義即可求出m,n.
解答: 解:由奇函數(shù)的定義知:f(-x)=(m2-1)x2-(m-1)x+(n+2)=-f(x)=-(m2-1)x2-(m-1)x-(n+2);
∴(m2-1)=-(m2-1),n+2=-(n+2),∴m=±1,n=-2;
故選C.
點(diǎn)評:考查奇函數(shù)的定義:f(-x)=-f(x).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

實(shí)數(shù)x,y滿足
x+2y-3≤0
x+3y-3≥0
y≤1
,則z=x-y的最大值是( 。
A、-1B、0C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式|4-x|≥1的解集為( 。
A、{x|3≤x≤5}
B、{x|x≤3或x≥5}
C、{x|-4≤x≤4}
D、R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

長方體ABCD-AB1C1D1中,AB=2,BC=2,DD1=3,則AC與BD1所成角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

通過兩個(gè)定點(diǎn)A(a,0),A1(a,a) 且在y軸上截得的弦長等于2|a|的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:3x+4y-2=0與l2:3x+4y-2=0的交點(diǎn)P,
(1)求過點(diǎn)P且平行于直線l3:x-2y-1=0的直線l4的方程;
(2)若直線l5:ax-2y+1=0與直線l2垂直,求a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的知識(shí)結(jié)構(gòu)圖,“求簡單函數(shù)的導(dǎo)數(shù)”的“上位”要素有
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+2x-3.
(1)若關(guān)于x的不等式f(x)>a的解集為{x|x≠-1},試求實(shí)數(shù)a的值;
(2)若關(guān)于x的不等式f(x)>a在[-3,3]內(nèi)有解,試求實(shí)數(shù)a的取值范圍;
(3)若關(guān)于x的不等式f(x)>ax-7對一切x∈(0,3)恒成立,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于函數(shù)y=lg|x-3|和y=sin
πx
2
(-4≤x≤10),下列說法正確的是
 

(1)函數(shù)y=lg|x-3|的圖象關(guān)于直線x=-3對稱;
(2)y=sin
πx
2
(-4≤x≤10)的圖象關(guān)于直線x=3對稱;
(3)兩函數(shù)的圖象一共有10個(gè)交點(diǎn);
(4)兩函數(shù)圖象的所有交點(diǎn)的橫坐標(biāo)之和等于30;
(5)兩函數(shù)圖象的所有交點(diǎn)的橫坐標(biāo)之和等于24.

查看答案和解析>>

同步練習(xí)冊答案