用1、5、9、13中任意一個(gè)數(shù)作分子,4、8、12、16中任意一個(gè)數(shù)作分母,可構(gòu)成
 
個(gè)不同的分?jǐn)?shù)?可構(gòu)成
 
個(gè)不同的真分?jǐn)?shù)?
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:用1、5、9、13中任意一個(gè)數(shù)作分子,4、8、12、16中任意一個(gè)數(shù)作分母,根據(jù)分步計(jì)數(shù)原理即可得到,
解答: 解:用1、5、9、13中任意一個(gè)數(shù)作分子,4、8、12、16中任意一個(gè)數(shù)作分母,有
C
1
4
C
1
4
=16個(gè)不同的分?jǐn)?shù),根據(jù)真分?jǐn)?shù)的定義,每一個(gè)數(shù)字為一類,根據(jù)分類計(jì)數(shù)原理可得.

根據(jù)真分?jǐn)?shù)的定義,
當(dāng)分子為為1時(shí),分母有4種選擇,
當(dāng)分子為為5時(shí),分母有3種選擇,
當(dāng)分子為為9時(shí),分母有2種選擇,
當(dāng)分子為為13時(shí),分母有1種選擇,
根據(jù)分類計(jì)數(shù)原理得真分?jǐn)?shù)有,4+3+2+1=10種,
故答案為:16,10
點(diǎn)評(píng):本題主要考查了分類和分步計(jì)數(shù)原理,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x)•f(x+
3
2
π)=-1.若f(
π
2
)=2,則f(11π)等于( 。
A、-2
B、-
1
2
C、
1
2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an},a1=1,an=2n+an-1(n≥2),an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式
ln(kx)
x
1
e
對(duì)任意正實(shí)數(shù)x恒成立,則實(shí)數(shù)k的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)定義域:
(1)f(x)=
5
|x|-3
-x;
(2)y=
x-1+
1-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x(a+lnx)有極小值-e-2
(1)求實(shí)數(shù)a的值;
(2)若k∈Z,且k<
f(x)
x-1
對(duì)任意x>1恒成立,求k的最大值;
(3)當(dāng)n>m>1,(n,m∈Z)時(shí),證明:(mnnm>(nmmn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求方程
13-
13+x
=x的實(shí)數(shù)解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的多面體是由底面為ABCD的長(zhǎng)方體被截面AEC1F所截面而得到的,其中AB=4,BC=2,CC1=3,BE=1
(Ⅰ)求BF的長(zhǎng);
(Ⅱ)求面AEC1F與底面ABCD所成二面角的余弦值
(Ⅲ)求點(diǎn)C到平面AEC1F的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

應(yīng)用函數(shù)單調(diào)性定義證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)上是減函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案