(本題滿分16分)如圖,在六面體中,,,.
求證:(1);(2).
科目:高中數(shù)學 來源: 題型:解答題
(本小題共12分)
如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,M是棱PC上的點,PA=PD=2,BC=AD=1,CD=.
(1)求證:平面PQB⊥平面PAD;
(2)若二面角M-BQ-C為30°,設PM=tMC,試確定t的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖所示,已知六棱錐的底面是正六邊形,平面,是的中點。
(Ⅰ)求證:平面//平面;
(Ⅱ)設,當二面角的大小為時,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知點B在以AC為直徑的圓上,SA⊥面ABC,AE⊥SB于E,AF⊥SC于F.
(I)證明:SC⊥EF;
(II)若求三棱錐S—AEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知三棱柱ABC-A1B1C1,側面BCC1B1丄底面ABC.
(I)若M、N分別是AB,A1C的中點,求證:MN//平面BCC1B1
(II)若三棱柱ABC-A1B1C1的各棱長均為2,側棱BB1與底面 ABC所成的角為60°.問在線段A1C1上是否存在一點P,使得平面B1CP丄平面ACC1A1,若存在,求C1P與PA1的比值,若不存在,說明 理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在組合體中,ABCD—A1B1C1D1是一個長方體,P—ABCD是一個四棱錐.AB=2,BC=3,點P平面CC1D1D,且PC=PD=.
(1)證明:PD平面PBC;
(2)求PA與平面ABCD所成的角的正切值;
(3)若,當a為何值時,PC//平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com