【題目】某網(wǎng)絡(luò)營(yíng)銷部門為了統(tǒng)計(jì)某市網(wǎng)友某日在某淘寶店的網(wǎng)購(gòu)情況,隨機(jī)抽查了該市當(dāng)天名網(wǎng)友的網(wǎng)購(gòu)金額情況,得到如下統(tǒng)計(jì)表(如圖).
網(wǎng)購(gòu)金額(單位:千元) | 頻數(shù) | 頻率 |
3 | 0.05 | |
9 | 0.15 | |
15 | 0.25 | |
18 | 0.30 | |
若網(wǎng)購(gòu)金額超過(guò)千元的顧客定義為“網(wǎng)購(gòu)達(dá)人”,網(wǎng)購(gòu)金額不超過(guò)
千元的顧客定義為“非網(wǎng)購(gòu)達(dá)人”,已知“非網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)達(dá)人”人數(shù)比恰好為
.
(Ⅰ)試確定的值,并補(bǔ)全頻率分布直方圖(如圖);
(Ⅱ)該營(yíng)銷部門為了進(jìn)一步了解這名網(wǎng)友的購(gòu)物體驗(yàn),從“非網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)達(dá)人”中用分層抽樣的方法抽取
人,若需從這
人中隨機(jī)選取
人進(jìn)行問(wèn)卷調(diào)查.設(shè)
為選取的
人中“網(wǎng)購(gòu)達(dá)人”的人數(shù),求
的分布列及其數(shù)學(xué)期望.
【答案】(Ⅰ),
,
,
;圖見解析;(Ⅱ)分布列見解析,
.
【解析】
(1)由頻數(shù)之和為與“非網(wǎng)購(gòu)達(dá)人”與“網(wǎng)購(gòu)達(dá)人”人數(shù)比恰好為
,列出關(guān)于
的方程組,由此能求出
的值,并補(bǔ)全頻率分布直方圖;
(2)由題設(shè)知的可能取值為
,
,
,
,利用已知條件結(jié)合排列組合知識(shí)分別求出相對(duì)應(yīng)的概率,由此能求出
的分布列和數(shù)學(xué)期望.
(Ⅰ)根據(jù)題意,有,解得
,所以
,
;
(Ⅱ)用分層抽樣的方法,從中選取人,則其中“網(wǎng)購(gòu)達(dá)人”有
人, “非網(wǎng)購(gòu)達(dá)人”有
人,故
的可能取值為
,
,
,
,
,
,
,
,
所以的分布列為:
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】檳榔原產(chǎn)于馬來(lái)西亞,中國(guó)主要分布在云南、海南及臺(tái)灣等熱帶地區(qū),在亞洲熱帶地區(qū)廣泛栽培.檳榔是重要的中藥材,在南方一些少數(shù)民族還有將果實(shí)作為一種咀嚼嗜好品,但其被世界衛(wèi)生組織國(guó)際癌癥研究機(jī)構(gòu)列為致癌物清單Ⅰ類致癌物.云南某民族中學(xué)為了解,
兩個(gè)少數(shù)民族班學(xué)生咀嚼檳榔的情況,分別從這兩個(gè)班中隨機(jī)抽取5名同學(xué)進(jìn)行調(diào)查,將他們平均每周咀嚼檳榔的顆數(shù)作為樣本繪制成莖葉圖如圖所示(圖中的莖表示十位數(shù)字,葉表示個(gè)位數(shù)字).
(1)你能否估計(jì)哪個(gè)班級(jí)學(xué)生平均每周咀嚼檳榔的顆數(shù)較多?
(2)從班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)19的數(shù)據(jù)記為
,從
班的樣本數(shù)據(jù)中隨機(jī)抽取一個(gè)不超過(guò)21的數(shù)據(jù)記為
,求
的概率;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四面體A-BCD中,有兩條棱的長(zhǎng)為,其余棱的長(zhǎng)度都為1;
(1)若,且
,求二面角A-BC-D的余弦值;
(2)求a的取值范圍,使得這樣的四面體是存在的;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《鄭州市城市生活垃圾分類管理辦法》已經(jīng)政府常務(wù)會(huì)議審議通過(guò),自2019年12月1日起施行.垃圾分類是對(duì)垃圾收集處置傳統(tǒng)方式的改革,是對(duì)垃圾進(jìn)行有效處置的一種科學(xué)管理方法.所謂垃圾其實(shí)都是資源,當(dāng)你放錯(cuò)了位置時(shí)它才是垃圾.某企業(yè)在市科研部門的支持下進(jìn)行研究,把廚余垃圾加工處理為一種可銷售的產(chǎn)品.已知該企業(yè)每周的加工處理量最少為75噸,最多為100噸.周加工處理成本y(元)與周加工處理量x(噸)之間的函數(shù)關(guān)系可近似地表示為,且每加工處理一噸廚余垃圾得到的產(chǎn)品售價(jià)為16元.
(Ⅰ)該企業(yè)每周加工處理量為多少噸時(shí),才能使每噸產(chǎn)品的平均加工處理成本最低?
(Ⅱ)該企業(yè)每周能否獲利?如果獲利,求出利潤(rùn)的最大值;如果不獲利,則需要市政府至少補(bǔ)貼多少元才能使該企業(yè)不虧損?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)若在
上單調(diào)遞增,求
的取值范圍;
(2)若有兩個(gè)極值點(diǎn)
,
,
,證明:(i)
;(ii)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為
,下頂點(diǎn)為
,
為橢圓的左、右焦點(diǎn),過(guò)右焦點(diǎn)的直線與橢圓交于
兩點(diǎn),且
的周長(zhǎng)為
.
(I)求橢圓的方程;
(II)經(jīng)過(guò)點(diǎn)的直線與橢圓
交于不同的兩點(diǎn)
(均異于點(diǎn)
),試探求直線
與
的斜率之和是否為定值,證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的漸近線方程為
,一個(gè)焦點(diǎn)為
.
(1)求雙曲線的方程;
(2)過(guò)雙曲線上的任意一點(diǎn)
,分別作這兩條漸近線的平行線與這兩條漸近線得到四邊形
,證明四邊形
的面積是一個(gè)定值;
(3)設(shè)直線與
在第一象限內(nèi)與漸近線
所圍成的三角形
繞著
軸旋轉(zhuǎn)一周所得幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線方程與
,點(diǎn)
在
上運(yùn)動(dòng),點(diǎn)
在
上運(yùn)動(dòng),且線段
的長(zhǎng)為定值
.
(Ⅰ)求線段的中點(diǎn)
的軌跡方程;
(Ⅱ)設(shè)直線與點(diǎn)
的軌跡相交于
,
兩點(diǎn),
為坐標(biāo)原點(diǎn),若
,求原點(diǎn)
的直線
的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,
為
中點(diǎn),側(cè)棱
,底面
為直角梯形,其中
,
,
平面
,
、
分別是線段
、
上的動(dòng)點(diǎn),且
.
(1)求證:平面
;
(2)當(dāng)三棱錐的體積取最大值時(shí),求
到平面
的距離;
(3)在(2)的條件下求與平面
所成角.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com