(本小題滿分13分)
如圖,平行四邊形中,,,且,正方形所在平面與平面垂直,分別是的中點(diǎn).

(1)求證:;
(2)求證:平面
(3)求三棱錐的體積.

(1)略
(2)略
(3)
(Ⅰ)證明:平面平面,交線為

           ----------2分


           --------4分
(Ⅱ)證明:連結(jié),則的中點(diǎn)
中,         ---------------6分


平面              -------------8分
(Ⅲ)解:設(shè)邊上的高為
依題意:

即:點(diǎn)到平面的距離為 ---------------10分
     -----------------13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如下圖所示,正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,若E、F分別是BC、DD1中點(diǎn),則B1到平面ABF的距離為 (  )
(A)                 (B)                     
(C)                 (D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖5,在底面為直角梯形的四棱錐中,,,

(1)求證:;
(2)求直線;
(3)設(shè)點(diǎn)E在棱PC上,,若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC, △PAD是等邊三角形,已知BD=2AD=8,AB=2DC=(1)設(shè)M是PC上的一點(diǎn),證明:平面MBD⊥平面PAD(2)求四棱錐P-ABCD的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

必做題, 本小題10分.解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
如圖,在底面邊長(zhǎng)為1,側(cè)棱長(zhǎng)為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.
(1)當(dāng)時(shí),求直線AP與平面BDD1B1所成角的度數(shù);
(2)在線段上是否存在一個(gè)定點(diǎn),使得對(duì)任意的m,⊥AP,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知三棱柱中,三個(gè)側(cè)面均為矩形,底面為等腰直角三角形, ,點(diǎn)為棱的中點(diǎn),點(diǎn)在棱上運(yùn)動(dòng).

(1)求證;
(II)當(dāng)點(diǎn)運(yùn)動(dòng)到某一位置時(shí),恰好使二面角的平面角的余弦值為,求點(diǎn)到平面的距離;
(III)在(II)的條件下,試確定線段上是否存在一點(diǎn),使得平面?若存在,確定其位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在直三棱柱ABC-A1B1C1中∠ACB=90°, AA1="2," AC=BC=1,則異面直線A1B與AC所成角的余弦值是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知α,β是平面,m,n是直線。下列命題中不正確的是 (  )          
A.若m∥n,m⊥α,則n⊥αB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥α,,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是底面邊長(zhǎng)為1,高為2的正三棱柱被平面截去幾何體后得到的幾何體,其中為線段上異于的動(dòng)點(diǎn), 為線段上異于、的動(dòng)點(diǎn),為線段上異于、的動(dòng)點(diǎn),且,則下列結(jié)論中不正確的是(   )
A.B.是銳角三角形C.可能是棱臺(tái)D.可能是棱柱

查看答案和解析>>

同步練習(xí)冊(cè)答案