16.已知數(shù)列{an}的通項(xiàng)公式為${a_n}={(\sqrt{2})^{n-2}}$,則a1=( 。
A.$\sqrt{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.2

分析 根據(jù)數(shù)列的通項(xiàng)公式直接進(jìn)行求解即可.

解答 解:∵${a_n}={(\sqrt{2})^{n-2}}$,
∴a1=$(\sqrt{2})^{1-2}=\frac{1}{\sqrt{2}}$=$\frac{{\sqrt{2}}}{2}$,
故選:C

點(diǎn)評 本題主要考查數(shù)列通項(xiàng)公式的應(yīng)用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.用數(shù)學(xué)歸納法證明:$\frac{1}{1×2}+\frac{1}{2×3}+\frac{1}{3×4}+…+\frac{1}{n(n+1)}=\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.△ABC中,角A,B,C的對邊分別為a,b,c,若$\sqrt{3}$a=2bsinA,則銳角B的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-1+\frac{3t}{5}\\ y=-1+\frac{4t}{5}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為$ρ=\sqrt{2}sin(θ+\frac{π}{4})$
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C交于M、N兩點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)y=sin(6x+$\frac{π}{4}$)的圖象上各點(diǎn)向右平移$\frac{π}{8}$個單位,則得到新函數(shù)的解析式為( 。
A.y=cos6xB.y=-cos6xC.y=sin(6x+$\frac{5π}{8}$)D.y=sin(6x+$\frac{π}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.要得到函數(shù)y=cosx的圖象,只需將函數(shù)y=sin(x+$\frac{π}{3}$)的圖象怎樣平移得到?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)$\overrightarrow{a}$,$\overrightarrow$是兩個不共線的非零向量,若8$\overrightarrow{a}+k\overrightarrow$和k$\overrightarrow{a}+2\overrightarrow$共線,則實(shí)數(shù)k的值為±4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)y=sinx-$\sqrt{3}$cosx的圖象向左平移m(m>0)個單位長度后,所得到的圖象關(guān)于y軸對稱,則m的值可以是( 。
A.$\frac{5π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.將函數(shù)y=sin(2x+$\frac{π}{4}$)的圖象上各點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,再向右平移$\frac{π}{8}$個單位長度,所得到的函數(shù)圖象的一個對稱中心是(  )
A.(π,0)B.($\frac{5π}{16}$,0)C.($\frac{5π}{8}$,0)D.($\frac{7π}{8}$,0)

查看答案和解析>>

同步練習(xí)冊答案