分析 (1)令判別式△=0解出a;
(2)根據(jù)單調(diào)性得出對(duì)稱(chēng)軸在區(qū)間[a-1,a+1]外邊們列出不等式解出;
(3)討論對(duì)稱(chēng)軸和區(qū)間[0,2]的位置關(guān)系得出f(x)的單調(diào)性,利用單調(diào)性求出最小值.
解答 解:(1)若f(x)的圖象與x軸有唯一的交點(diǎn),
則方程x2-ax+1=0有唯一解,
∴△=a2-4=0,∴a=±2.
(2)f(x)的對(duì)稱(chēng)軸為x=$\frac{a}{2}$,
∵f(x)在[a-1,a+1]上單調(diào),
∴$\frac{a}{2}$≤a-1或$\frac{a}{2}$≥a+1,
解得a≥2或a≤-2.
(3)f(x)的對(duì)稱(chēng)軸為x=$\frac{a}{2}$,開(kāi)口向上.
若$\frac{a}{2}$≤0,即a≤0,則f(x)在[0,2]上單調(diào)遞增,
∴fmin(x)=f(0)=1;
若0<$\frac{a}{2}$<2,即0<a<4時(shí),f(x)在[0,2]上先減后增,
∴fmin(x)=f($\frac{a}{2}$)=1-$\frac{{a}^{2}}{4}$;
若$\frac{a}{2}≥2$,即a≥4,則f(x)在[0,2]上單調(diào)遞減,
∴fmin(x)=f(2)=5-2a.
綜上,當(dāng)a≤0時(shí),fmin(x)=1;
當(dāng)0<a<4時(shí),fmin(x)=1-$\frac{{a}^{2}}{4}$;
當(dāng)a≥4,fmin(x)=5-2a.
點(diǎn)評(píng) 本題考查了二次函數(shù)的單調(diào)性判斷,最值計(jì)算,分類(lèi)討論思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2 | C. | 3 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(sin$\frac{π}{5}$)>f(cos$\frac{π}{5}$) | B. | f(sin$\frac{π}{5}$)<f(cos$\frac{π}{5}$) | C. | f(sin$\frac{π}{5}$)=f(cos$\frac{π}{5}$) | D. | 大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若f(x1)≤f(x)≤f(x2)對(duì)?x∈R恒成立,則|x2-x1|min=π | |
B. | y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{2π}{3}$,0)中心對(duì)稱(chēng) | |
C. | 函數(shù)f(x)的單調(diào)區(qū)間為:[kπ+$\frac{π}{12}$,kπ+$\frac{7π}{12}$](k∈Z) | |
D. | 函數(shù)y=|f(x)|(x∈R)的圖象相鄰兩條對(duì)稱(chēng)軸之間的距離是$\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
查看答案和解析>>