分析 先由X~B(10,0.6),得均值E(X)=6,方差D(X)=0.6,然后由X+Y=8得Y=-X+8,再根據(jù)公式求解即可.
解答 解:由題意X~B(10,0.6),知隨機(jī)變量X服從二項(xiàng)分布,n=10,p=0.6,
則均值E(X)=np=6,方差D(X)=npq=2.4,
又∵X+Y=8,
∴Y=-X+8,
∴E(Y)=-E(X)+8=-6+8=2,
D(X)+E(Y)=4.4.
故答案為:4.4.
點(diǎn)評(píng) 解題關(guān)鍵是:若兩個(gè)隨機(jī)變量Y,X滿(mǎn)足一次關(guān)系式Y(jié)=aX+b(a,b為常數(shù)),當(dāng)已知E(X)、D(X)時(shí),則有E(Y)=aE(X)+b,D(Y)=a2D(X).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\frac{1}{2}$ | C. | -1 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\sqrt{10}$ | C. | $\frac{17}{2}$ | D. | 10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (4,5) | B. | (-2,2) | C. | (3,5) | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com