17、設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2+|x-a|+1,x∈R.
(Ⅰ)若f(x)是偶函數(shù),試求a的值;
(Ⅱ)求證:無論a取任何實(shí)數(shù),函數(shù)f(x)都不可能是奇函數(shù).
分析:(I)根據(jù)偶函數(shù)的定義建立恒等式f(-x)=f(x)在R上恒成立,從而求出a的值即可;
(II)利用反證法進(jìn)行證明,先假設(shè)存在實(shí)數(shù)a,使函數(shù)f(x)是奇函數(shù),則f(-x)=-f(x)在R上恒成立,求出f(0)=0,但無論a取何實(shí)數(shù),f(0)=|a|+1>0,與f(0)=0矛盾.從而矛盾說明,假設(shè)是錯(cuò)誤的,最后肯定結(jié)論.
解答:解:(Ⅰ)∵f(x)是偶函數(shù),∴f(-x)=f(x)在R上恒成立,
即(-x)2+|-x-a|+1=x2+|x-a|+1,
化簡整理,得ax=0在R上恒成立,(3分)
∴a=0.(5分)
(Ⅱ)證明:用反證法.假設(shè)存在實(shí)數(shù)a,使函數(shù)f(x)是奇函數(shù),
則f(-x)=-f(x)在R上恒成立,∴f(0)=-f(0),∴f(0)=0,
但無論a取何實(shí)數(shù),f(0)=|a|+1>0,與f(0)=0矛盾.
矛盾說明,假設(shè)是錯(cuò)誤的,所以無論a取任何實(shí)數(shù),函數(shù)f(x)不可能是奇函數(shù).
點(diǎn)評:本題主要考查了函數(shù)奇偶性的應(yīng)用,以及反證法的思想,同時(shí)考查了計(jì)算的能力,屬于綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函數(shù),試求a的值;
(2)在(1)的條件下,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函數(shù)的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.求f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f'(x)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為
y=-2x
y=-2x

查看答案和解析>>

同步練習(xí)冊答案