以點A(-1,4)、B(3,2)為直徑的兩個端點的圓的方程為
 
考點:圓的標準方程
專題:直線與圓
分析:由條件求得線段AB的中點C的坐標,即為所求的圓心坐標,再求得AC的長,即為所求圓的半徑,從而求得要求的圓的方程.
解答: 解:圓的圓心為線段AB的中點C(1,3),半徑為AC=
22+12
=
5
,
∴要求的圓的方程為 (x-1)2+(y-3)2=5,
故答案為:(x-1)2+(y-3)2=5.
點評:本題主要考查求圓的標準方程的方法,求出圓心坐標和半徑的值,是解題的關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(1,t,2),
b
=(2,-1,2),且向量
a
b
垂直,則t等于(  )
A、-6
B、6
C、-2
D、-
2
55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2|sinx|+3的最小正周期是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩正數(shù)a,c滿足a+2c+2ac=8,則ac的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點A(4,a)和點B(5,b)的直線與直線y=x+m平行,則b-a等于( 。
A、2B、4C、5D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)f(x)=x2-2mx+1在(1,+∞)上是增函數(shù),q:函數(shù)g(x)=x+m在區(qū)間[-1,1]上有零點,那么p是q的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=log33.6,b=log93.2,c=log93.6,則( 。
A、a>b>c
B、a>c>b
C、b>a>c
D、c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=loga(6-3ax)在[0,1]上是減函數(shù),則a的取值范圍是(  )
A、(0,1)
B、(1,2)
C、(1,2)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-4ax2+5x(a∈R).
(1)當(dāng)a=1時,求函數(shù)在區(qū)間[0,2]上的最大值;
(2)若函數(shù)f(x)在區(qū)間(0,2]上無極值,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案