已知A={x||x-a|=0},B={1,2,b},是否存在實(shí)數(shù)a,使得對(duì)于任意實(shí)數(shù)b都有A⊆B?若存在,求出對(duì)應(yīng)的a;若不存在,試說(shuō)明理由.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:集合A、B均為有限集合,可以直接根據(jù)元素間的相等關(guān)系來(lái)判斷或求出對(duì)應(yīng)的實(shí)數(shù)a.
解答: 解:對(duì)任意的實(shí)數(shù)b都有A⊆B,則當(dāng)且僅當(dāng)1或2也是A中的元素,
∵A={a},
∴a=1,或a=2
點(diǎn)評(píng):本題主要考查集合的化簡(jiǎn)和集合的運(yùn)算,要注意分情況討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=lnx+ax2-(a+1)x(a∈R).
(Ⅰ)若函數(shù)y=f(x)有兩個(gè)不同的極值點(diǎn),求實(shí)數(shù)a的取值范圍;
(Ⅱ)設(shè)曲線C:y=f(x)在點(diǎn)A(1,f(1))處的切線為l,若l在點(diǎn)A處穿過曲線C(即動(dòng)點(diǎn)在點(diǎn)A附近沿曲線y=f(x)運(yùn)動(dòng),經(jīng)過點(diǎn)A時(shí),從l的一側(cè)進(jìn)入另一側(cè)),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l過點(diǎn)A(6,-4)、斜率k=-2
(1)求直線l的一般式方程
(2)求直線l在 y軸上的截距并寫出直線l的斜截式方程
(3)求直線l在 x軸上的截距并寫出直線l的截距式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:5x+1=3x2-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將進(jìn)貨價(jià)為8元的商品按每件10元售出,每天可銷售200件;若每件的售價(jià)漲0.5元,其銷售量減少10件,問將售價(jià)定為多少時(shí),才能使所賺利潤(rùn)最大?并求出這個(gè)最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,E是矩形ABCD的CD邊的中點(diǎn),且AD=2,AB=4,連AE,將△ADE沿AE翻折(如圖2),使平面ADE⊥平面ABCE,F(xiàn)是BD中點(diǎn),連CF.

(Ⅰ)求證:CF∥平面ADE;
(Ⅱ)求證:AD⊥平面DBE;
(Ⅲ)求四棱錐D-ABCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1、F2是雙曲線C:
x2
a2
-
y2
b2
=1(a>0且b>0)的兩個(gè)焦點(diǎn),P為雙曲線C上一點(diǎn),且∠F1PF2=60°.若△PF1F2的面積為9
3
,則b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

空間不共線的四個(gè)點(diǎn)可確定
 
個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x+1(x≤0)
log
1
3
x(x>0)
,則不等式f(x)>1的解集為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案