A.關(guān)于x軸對(duì)稱 B.關(guān)于y軸對(duì)稱
C.關(guān)于原點(diǎn)對(duì)稱 D.重合或關(guān)于y軸對(duì)稱
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修四數(shù)學(xué)蘇教版 蘇教版 題型:013
已知y=Asin(ωx+)在任何一個(gè)周期內(nèi),當(dāng)x=時(shí),有最大值2;當(dāng)x=0時(shí),有最小值-2,那么函數(shù)的表達(dá)式可能是
y=2sinx
y=2sin(3x+)
y=2sin(3x-)
y=sin(3x-)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:廣東省汕頭市澄海中學(xué)2010屆高三上學(xué)期期中考試數(shù)學(xué)(理)試題 題型:044
已知向量=(sinα,5)與=(5,cosα-)互相垂直,且α∈(0,π)
(Ⅰ)求sinα和cosα的值;
(Ⅱ)若cos(β-α)=,且β是鈍角,求sinβ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二問中,∵xÎ[0, ],∴2x-Î[-,],
∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,
當(dāng)2x-=, 即x=時(shí),f(x)max=1
第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用構(gòu)造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-, ……………………8分
當(dāng)2x-=, 即x=時(shí),f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
已知sina=,aÎ(,p),cosb=-,b是第三象限的角.
⑴ 求cos(a-b)的值;
⑵ 求sin(a+b)的值;
⑶ 求tan2a的值.
【解析】第一問中∵ aÎ(,p),∴ cosa=-=-, ∵ b是第三象限的角,
∴ sinb=-=-,
cos(a-b)=cosa·cosb+sina·sinb =(-)×(-)+×(-)=-
⑵ 中sin(a+b)=sina·cosb+cosa·sinb =×(-)+(-)×(-)= ⑶ 利用二倍角的正切公式得到。∵tana==- ∴tan2a= ==-
解∵ aÎ(,p),∴ cosa=-=-, …………1分
∵ b是第三象限的角,∴ sinb=-=-, ………2分
⑴ cos(a-b)=cosa·cosb+sina·sinb …………3分
=(-)×(-)+×(-)=- ………………5分
⑵ sin(a+b)=sina·cosb+cosa·sinb ……………………6分
=×(-)+(-)×(-)= …………………8分
⑶ ∵tana==- …………………9分
∴tan2a= ………………10分
==-
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com