2.等差數(shù)列{an}的前k項(xiàng)和為28,前2k項(xiàng)和為76,則它的前3k項(xiàng)和為( 。
A.104B.124C.134D.144

分析 由等差數(shù)列的性質(zhì)可得:Sk,S2k-Sk,S3k-S2k成等差數(shù)列,代入即可得出.

解答 解:由等差數(shù)列的性質(zhì)可得:Sk,S2k-Sk,S3k-S2k成等差數(shù)列,
∴2(S2k-Sk)=S3k-S2k+Sk,
∴2×(76-28)=S3k-76+28,
解得S3k=144.
故選:D.

點(diǎn)評(píng) 本題考查了等差數(shù)列的前n項(xiàng)和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)sinα=$\frac{4}{5}$且α是第二象限角,求tanα的值;
(2)利用(1)中tanα的值求此式值:$\frac{sinα-cosα}{sinα+2cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)是義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x.
(1)求f(x)在R上的解析式;
(2)解不等式f(x2-2x)+f(3-2x2)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a,b是實(shí)數(shù),命題“?ab>0,都有a>0,b>0”的否定是(  )
A.?ab≤0,使得a≤0,b≤0B.?ab≤0,使得a≤0或b≤0
C.?ab>0,使得a≤0,b≤0D.?ab>0,使得a≤0或b≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知兩個(gè)等差數(shù)列{an},{bn}的前n和分別為Sn,Tn,且滿足$\frac{S_9}{T_7}=\frac{5}{3}$,求$\frac{a_5}{b_4}$=$\frac{35}{27}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中值域?yàn)椋?,+∞)的是( 。
A.$y={2}^{{x}^{2}+1}$B.y=$\frac{x+2}{x-1}$C.y=$\sqrt{1-{2}^{x}}$D.y=$(\frac{1}{3})^{1-x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.條件甲:“a>0”是條件乙:“使得ax2-ax+1>0對(duì)一切x恒成立的a的取值范圍”的(  )條件.
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在(x2+x+1)5的展開式中,x5的系數(shù)是51.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)U=A∪B={x∈N|0≤x≤10},A∩∁UB={1,2,3,5,7,9},則B的非空真子集的個(gè)數(shù)為( 。
A.5B.30C.31D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案