11.在(x2+x+1)5的展開式中,x5的系數(shù)是51.

分析 先求得[(x2+x)+1)]5的展開式的通項(xiàng)公式,再求出(x2+x)5-r 的展開式的通項(xiàng)公式,可得x5的系數(shù).

解答 解:(x2+x+1)5=[(x2+x)+1)]5的展開式的通項(xiàng)公式為 Tr+1=${C}_{5}^{r}$•(x2+x)5-r,r=0,1,2,3,4,5,
而(x2+x)5-r 的展開式的通項(xiàng)公式為 Tr′+1=${C}_{5-r}^{r′}$•(x25-r-r′•xr′=${C}_{5-r}^{r′}$•x10-2r-r′,
0≤r′≤5-r,故有$\left\{\begin{array}{l}{r=0}\\{r′=5}\end{array}\right.$,或$\left\{\begin{array}{l}{r=1}\\{r′=3}\end{array}\right.$,或 $\left\{\begin{array}{l}{r=2}\\{r′=1}\end{array}\right.$.
故 x5的系數(shù)為 ${C}_{5}^{0}$•${C}_{5}^{5}$+${C}_{5}^{1}$•${C}_{4}^{3}$+${C}_{5}^{2}$•${C}_{3}^{1}$=1+20+30=51,
故答案為:51.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,AB是圓O的直徑,PA垂直圓O所在的平面,點(diǎn)C,F(xiàn)分別在兩個(gè)半圓弧的中點(diǎn),PE∥AC,PA=AC=2,PE=1.
(1)求證:BC⊥AE;
(2)求直線PF與平面ECB所成角θ的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.等差數(shù)列{an}的前k項(xiàng)和為28,前2k項(xiàng)和為76,則它的前3k項(xiàng)和為(  )
A.104B.124C.134D.144

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)y=f(x-1)的圖象關(guān)于點(diǎn)(1,0)成中心對(duì)稱,且當(dāng)(-∞,0)時(shí),f(x)+xf′(x)<0成立(其中f′(x)是f(x)的導(dǎo)函數(shù)),若a=(30.3)•f(30.3),$b=({log_9}3)•f({log_9}3),c=({log_3}\frac{1}{9})•f({log_3}\frac{1}{9})$,則a、b、c的大小關(guān)系是( 。
A.a>b>cB.c>a>bC.c>b>aD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知數(shù)列{an}滿足:a1=1,${2^{n-1}}{a_n}={a_{n-1}}(n∈{N^*},n≥2)$,則數(shù)列{an}的通項(xiàng)公式為an=${(\frac{1}{2})^{\frac{n(n-1)}{2}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖所示,正方形AEFD邊長為4,N是DF中點(diǎn),BC=BE=2,沿著EF將直角梯形BEFC翻折為直角梯形B1EFC1,使AB1=2$\sqrt{3}$.(2)線段B1E上是否存在一點(diǎn)M,使FM∥平面AB1N,若存在,試確定點(diǎn)M的位置,若不存在,請(qǐng)說明理由;
(3)若平面AB1N與平面B1C1FE交線為B1P,試求線段C1F上點(diǎn)P的位置,
并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.P是△ABC內(nèi)一點(diǎn),△ACP,△BCP的面積分別記為S1,S2,已知$\overrightarrow{CP}=\frac{3λ}{4}\overrightarrow{CA}+\frac{λ}{4}\overrightarrow{CB}$,其中λ∈(0,1),則$\frac{S_1}{S_2}$=( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知指數(shù)函數(shù)f(x)=ax(0<a<1),則f(3)<f(2).(填>或<)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等比數(shù)列{an}中,若a3a6=9,a2a4a5=27,則a2=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案