【題目】如圖,為橢圓的左頂點,過的直線交拋物線兩點,的中點.

1)求證:點的橫坐標是定值,并求出該定值;

2)若直線點,且傾斜角和直線的傾斜角互補,交橢圓于兩點,求的值,使得的面積最大.

【答案】(1)證明見解析,定值1. (2)

【解析】

1)由題意可求,設,聯(lián)立直線與拋物線,利用的中點得,計算可得點的橫坐標是定值;

2)由題意設直線的方程為,聯(lián)立方程,利用的中點,可得,根據(jù)三角形的面積公式以及基本不等式可求的面積最大值,由取等條件解得的值.

1,過的直線和拋物線交于兩點,所以的斜率存在且不為0,設,其中是斜率的倒數(shù),設、,滿足,即,因為中點,所以,所以,

所以,即點的橫坐標為定值1.

2)直線的傾斜角和直線的傾斜角互補,所以的斜率和的斜率互為相反數(shù).設直線,即,

聯(lián)列方程,

,所以;且,

∵點中點,∴

的距離,,

,令,

當且僅當時取到,

所以.

法二:因為點在拋物線上,不妨設,又中點,則,代入拋物線方程得:,得:,∴為定值.

2)∵直線的斜率,直線斜率,

∴直線的方程:,即,令代入橢圓方程整理得:

,設、,下同法一.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為迎接2022年冬奧會,北京市組織中學生開展冰雪運動的培訓活動,并在培訓結束后對學生進行了考核.記X表示學生的考核成績,并規(guī)定X≥85為考核優(yōu)秀.為了了解本次培訓活動的效果,在參加培訓的學生中隨機抽取了30名學生的考核成績,并作成如下莖葉圖.

1)從參加培訓的學生中隨機選取1人,請根據(jù)圖中數(shù)據(jù),估計這名學生考核優(yōu)秀的概率;

2)從圖中考核成績滿足X[7079]的學生中任取3人,設Y表示這3人重成績滿足≤10的人數(shù),求Y的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐的底面是正方形, 平面,,點上的點,且 .

(1)求證:對任意的 ,都有.

(2)設二面角C-AE-D的大小為 ,直線BE與平面所成的角為 ,

,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了調查民眾對國家實行新農村建設政策的態(tài)度,現(xiàn)通過網(wǎng)絡問卷隨機調查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持新農村建設人數(shù)如下表:

年齡

頻數(shù)

10

20

30

20

10

10

支持新農村建設

3

11

26

12

6

2

1)根據(jù)上述統(tǒng)計數(shù)據(jù)填下面的列聯(lián)表,并判斷是否有的把握認為以50歲為分界點對新農村建設政策的支持度有差異;

年齡低于50歲的人數(shù)

年齡不低于50歲的人數(shù)

合計

支持

不支持

合計

2)為了進一步推動新農村建設政策的實施,中央電視臺某節(jié)目對此進行了專題報道,并在節(jié)目最后利用隨機撥號的形式在全國范圍內選出4名幸運觀眾(假設年齡均在20周歲至80周歲內),給予適當?shù)莫剟?/span>.若以頻率估計概率,記選出4名幸運觀眾中支持新農村建設人數(shù)為,試求隨機變量的分布列和數(shù)學期望.

參考數(shù)據(jù):

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中是真命題的是  

A. 命題“若,則”的否命題是“若,則

B. 為假命題,則p,q均為假命題

C. 命題p,則,

D. ”是“函數(shù)為偶函數(shù)”的充要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法中錯誤的是( )

A. 從某社區(qū)65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調查社會購買力的某一項指標,應采用的最佳抽樣方法是分層抽樣

B. 線性回歸直線一定過樣本中心點

C. 若兩個隨機變量的線性相關性越強,則相關系數(shù)的值越接近于1

D. 若一組數(shù)據(jù)1、、2、3的眾數(shù)是2,則這組數(shù)據(jù)的中位數(shù)是2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,圓與圓關于直線對稱.

1)求圓的方程;

2)過直線上的點分別作斜率為,4的兩條直線,求使得被圓截得的弦長與被圓截得的弦長相等時點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在棱長為1的正方體中,動點在線段上運動,且有.

(1)若,求證:;

(2)若二面角的平面角的余弦值為,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家具廠有方木料90,五合板600,準備加工成書桌和書櫥出售.已知生產(chǎn)第張書桌需要方木料O.l,五合板2,生產(chǎn)每個書櫥而要方木料0.2,五合板1,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.

(1)如果只安排生產(chǎn)書桌,可獲利潤多少?

(2)怎樣安排生產(chǎn)可使所得利潤最大?

查看答案和解析>>

同步練習冊答案