給出下列命題:

①直線a在平面外,點A、B在a上,點c∈,則三點A、B、C可確定一個平面且只可確定一個平面.

②空間三條直線兩兩平行,則這三條直線共確定三個平面.

③直線a平面,直線b在外,則a、b是異面直線.

④三條直線中,a、b異面,b∥c,則a、c異面.

其中錯誤命題的個數(shù)是

[  ]

A.1
B.2
C.3
D.4
答案:D
解析:

①三點有共線可能,不共線三點確定一個平面;

②空間三條直線兩兩平行,則這三條直線共確定1或3個平面.

③兩線也可平行,異面不是不再一個平面簡單的意思而是任何情況下都不共面;

④三條直線中,ab異面,bc,則a、c,共面,異面都有可能.


提示:

提示:應(yīng)注意特殊情形.如①中AB、C可能共線,②中三直線可能共面.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;
②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①有一條側(cè)棱與底面兩邊垂直的棱柱是直棱柱;②底面為正多邊形的棱柱為正棱柱;③頂點在底面上的射影到底面各頂點的距離相等的棱維是正棱錐;④A、B為球面上相異的兩點,則通過A、B的大圓有且只有一個.其中正確命題的個數(shù)是                                              ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆江西省高三第四次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列命題:

①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;③已知平面,直線,若,,則;④四個側(cè)面兩兩全等的四棱柱為直四棱柱;⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐.其中正確命題的序號是      

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

給出下列命題:①有一條側(cè)棱與底面兩邊垂直的棱柱是直棱柱;②底面為正多邊形的棱柱為正棱柱;③頂點在底面上的射影到底面各頂點的距離相等的棱維是正棱錐;④A、B為球面上相異的兩點,則通過A、B的大圓有且只有一個.其中正確命題的個數(shù)是                                              ( 。
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省南昌二中高三(上)第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列命題:
①經(jīng)過空間一點一定可作一條直線與兩異面直線都垂直;
②經(jīng)過空間一點一定可作一平面與兩異面直線都平行;
③已知平面α、β,直線a、b,若α∩β=a,b⊥a,則b⊥α;
④四個側(cè)面兩兩全等的四棱柱為直四棱柱;
⑤底面是等邊三角形,側(cè)面都是等腰三角形的三棱錐是正三棱錐;
其中正確命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案