14.求幾何體的體積.

分析 根據(jù)幾何體的三視圖得出該幾何體是一個(gè)以俯視圖為底面的三棱錐,求出棱錐的底面面積和高,代入體積公式,可得答案.

解答 解:由已知中的三視圖,可知該幾何體是以俯視圖為底面的三棱錐,
其底面面積S=$\frac{1}{2}$×2×2=2,
棱錐的高h(yuǎn)=2,
∴棱錐體積V=$\frac{1}{3}$Sh=$\frac{4}{3}$

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A={y|y=x2-1,|x|≤2,x∈Z},用列舉法表示為{-1,0,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.以下四個(gè)命題中正確的個(gè)數(shù)為1個(gè).
①tan[arcsin(cos$\frac{40π}{3}$)]=-$\sqrt{3}$;
②△ABC不是鈍角三角形,且有sin(A+B-C)=sin(A-B+C),則此三角形是直角三角形;
③若sinα+sin2α=1,則cos2α+cos4α+cos6α=$\frac{1}{2}$;
④若$\frac{sinα}{{m}^{2}-1}$=$\frac{cosα}{2msinβ}$=$\frac{1}{1+2mcosβ+{m}^{2}}$,則sinα=$\frac{{m}^{2}-1}{{m}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{cos(\frac{π}{2}x+\frac{π}{6})\\;x≥0}\\{f(-x)\\;x<0}\end{array}\right.$,則f(-2013)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知cos($\frac{π}{4}$+x)=$\frac{3}{5}$,$\frac{7π}{12}$<x<$\frac{7π}{4}$,求$\frac{sin2x+sin2xtanx}{1-tanx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.集合{x|x為一條邊長(zhǎng)為2,一個(gè)內(nèi)角為30°的等腰三角形}中元素的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知sinα+cosα=-$\frac{1}{5}$,α∈(0,π),求:
(1)sinαcosα;
(2)sinα-cosα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,則z=$\frac{x+y}{x+1}$的取值范圍是( 。
A.[0,$\frac{4}{3}$]B.[$\frac{1}{2}$,2)C.[$\frac{1}{2}$,$\frac{4}{3}$]D.[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.給出下列命題:
①若x2=y2,則x=y;
②若x≠y,則x2≠y2;
③若x2≠y2,則x≠y;
④若x≠y且x≠-y,則x2≠y2
其中真命題的序號(hào)是③④.

查看答案和解析>>

同步練習(xí)冊(cè)答案