分析 (1)利用單調(diào)性的定義,判斷并證明函數(shù)f(x)的單調(diào)性;
(2)若f(x)是奇函數(shù),則f(x)+f(-x)=0,即可求m的值;
(3)求出f(x)的值域?yàn)镈,利用D⊆[-3,1],建立不等式,即可求m的取值范圍.
解答 解:(1)判斷:函數(shù)f(x)在R上單調(diào)遞增
證明:設(shè) x1<x2且x1,x2∈R
則$f({x_1})-f({x_2})=m-\frac{2}{{{5^{x_1}}+1}}-(m-\frac{2}{{{5^{x_2}}+1}})=\frac{{2({5^{x_1}}-{5^{x_2}})}}{{({{5^{x_1}}+1})({{5^{x_2}}+1})}}$
∵${x_1}<{x_2}∴{5^{x_1}}+1>0,{5^{x_2}}+1>0,{5^{x_1}}-{5^{x_2}}<0$,
∴f(x1)-f(x2)<0,
即f(x1)<f(x2),
∴f(x)在R上單調(diào)遞增;
(2)∵f(x)是R上的奇函數(shù),
∴$f(x)+f(-x)=m-\frac{2}{{{5^x}+1}}+m-\frac{2}{{{5^{-x}}+1}}=0$
即$2m-(\frac{2}{{{5^x}+1}}+\frac{{2×{5^x}}}{{{5^x}+1}})=0⇒2m-2=0$,∴m=1
(3)由${5^x}>0⇒0<\frac{2}{{{5^x}+1}}<2⇒m-2<m-\frac{2}{{{5^x}+1}}<m$,
∴D=(m-2,m).
∵D⊆[-3,1],
∴$\left\{{\begin{array}{l}{m-2≥-3}\\{m≤1}\end{array}}\right.⇒-1≤m≤1$,
∴m的取值范圍是[-1,1]
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性、奇偶性,考查函數(shù)的值域,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $y=x+\frac{1}{x}$ | B. | y=xsinx+cosx | C. | $y={e^x}-\frac{1}{e^x}$ | D. | $y=ln\frac{1-x}{1+x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 最大值為5,最小值為4 | B. | 最大值為10,最小值為8 | ||
C. | 最大值為10,最大值為6 | D. | 最大值為9,最小值為1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com