如圖,四棱錐的底面為一直角梯形,側(cè)面PAD是等邊三角形,其中,,平面底面的中點(diǎn).

(1)求證://平面;
(2)求與平面BDE所成角的余弦值;
(3)線段PC上是否存在一點(diǎn)M,使得AM⊥平面PBD,如果存在,求出PM的長度;如果不存在,請說明理由。

(1)詳見解析;(2)cosCBN= ;(3)不存在點(diǎn)M滿足題意.

解析試題分析:(1)證明BE∥平面PAD,只需證明AF∥BE;
(2)過C作DE的垂線,交DE的延長線于N,連接BN,證明∠CBN就是直線BC與平面BDE所成角,從而可求BC與平面BDE所成角的余弦值;
(3)假設(shè)PC上存在點(diǎn)M,使得AM⊥平面PBD,則AM⊥PD,可得點(diǎn)M與E重合.取CD中點(diǎn)G,連接EG,AG,則BD⊥AG,證明PD⊥平面BCD,從而PD⊥AD,這與△PAD是等邊三角形矛盾.
試題解析:(1)取PD中點(diǎn)F,連接AF, EF

,
又,


∴四邊形ABEF是平行四邊形               2分
∴AF∥BE  又平面PAD,平面PAD
//平面                                     4分
(2)過C作DE的垂線,交DE的延長線于N,連接BN
∵平面底面
平面
AF  又AF⊥PD,
∴AF⊥平面PCD
∴BE⊥平面PCD
∴BE⊥CN,又CN⊥DE,
∴CN⊥平面BDE
CBN就是直線與平面BDE所成角               7分
令A(yù)D=1,,易求得
∴sinCBN=
∴cosCBN= 
故與平面BDE所成角的余弦值為                        9分
(3)假設(shè)PC上存在點(diǎn)M,使得AM⊥平面PBD 則AM⊥PD,由(2)AF⊥PD
∴PD⊥平面AFM,又PD⊥平面ABEF
故點(diǎn)M與E重合。                  1分
取CD中點(diǎn)G,連接EG,AG
易證BD⊥AG,又BD⊥AE
∴BD⊥平面AEG
∴BD⊥EG
∴BD⊥PD,又PD⊥CD
∴PD⊥平面BCD
從而PD⊥AD,這與⊿PAD是等邊三角形矛盾
(另解坐標(biāo)法)
證明:取AD中點(diǎn)O,連接PO∵側(cè)面PAD是等邊三角形 ∴PO⊥AD
又∵平面底面, ∴PO⊥平面ABCD             2分
設(shè),如圖建立空間坐標(biāo)系,則

,,
,.          3分
(1),,
所以,
∵平面,∴平面.                     5分
(2),
設(shè)平面的一個(gè)法向量為
   求得平面的一個(gè)法向量為;    7分
,                         8分
所以直線與平面所成角的余弦值為。   10分
(3)設(shè)存在點(diǎn)M(滿足AM⊥平面PBD,則M、P、C三點(diǎn)共線
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/fd/3/pa2k.png" style="vertical-align:middle;" />,所以存在實(shí)數(shù),使得
                  11分
∵AM⊥平面PBD  ∴      得(不合題意)
故在線段上不存在點(diǎn)M滿足題意。                               14分
考點(diǎn):(1)空間的位置關(guān)系的證明;(2)線面角的求法;(3)向量在立體幾何中的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐中,,,點(diǎn)在平面內(nèi)的射影恰為的重心,M為側(cè)棱上一動(dòng)點(diǎn).

(1)求證:平面平面;
(2)當(dāng)M為的中點(diǎn)時(shí),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖幾何體中,四邊形為矩形,,,,.

(1)若的中點(diǎn),證明:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角梯形中,,,,如圖,把沿翻折,使得平面平面

(1)求證:;
(2)若點(diǎn)為線段中點(diǎn),求點(diǎn)到平面的距離;
(3)在線段上是否存在點(diǎn),使得與平面所成角為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,四棱錐PABCD的底面ABCD為一直角梯形,其中BAADCDAD,CDAD=2AB,PA⊥底面ABCD,EPC的中點(diǎn).
 
(1)求證:BE∥平面PAD
(2)若BE⊥平面PCD,求平面EBD與平面BDC夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,ABAA1.
 
(1)證明:A1C⊥平面BB1D1D
(2)求平面OCB1與平面BB1D1D的夾角θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,EBD的中點(diǎn),GPD的中點(diǎn),△DAB≌△DCBEAEBAB=1,PA,連接CE并延長交ADF.

(1)求證:AD⊥平面CFG
(2)求平面BCP與平面DCP的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐P-ABCD中,底面ABCD是邊長為1的正方形,且PA⊥平面ABCD.
 
(1)求證:PCBD;
(2)過直線BD且垂直于直線PC的平面交PC于點(diǎn)E,且三棱錐E-BCD的體積取到最大值.
①求此時(shí)四棱錐E-ABCD的高;
②求二面角A-DE-B的正弦值的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在邊長是2的正方體-中,分別為
的中點(diǎn). 應(yīng)用空間向量方法求解下列問題.

(1)求EF的長
(2)證明:平面;
(3)證明: 平面.

查看答案和解析>>

同步練習(xí)冊答案