【題目】已知定點S( -2,0) ,T(2,0),動點P為平面上一個動點,且直線SP、TP的斜率之積為.
(1)求動點P的軌跡E的方程;
(2)設點B為軌跡E與y軸正半軸的交點,是否存在直線l,使得l交軌跡E于M,N兩點,且F(1,0)恰是△BMN的垂心?若存在,求l的方程;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,以橢圓的2個焦點與1個短軸端點為頂點的三角形的面積為2。
(1)求橢圓的方程;
(2)如圖,斜率為k的直線l過橢圓的右焦點F,且與橢圓交與A,B兩點,以線段AB為直徑的圓截直線x=1所得的弦的長度為,求直線l的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三棱錐中,,,,.有以下結論:①三棱錐的表面積為;②三棱錐的內(nèi)切球的半徑;③點到平面的距離為;其中正確的是( )
A.①②B.②③C.①③D.①②③
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為.(為參數(shù))以坐標原點為極點,軸的正半軸為極軸建立極坐標系,點的極坐標為,直線的極坐標方程為.
(1)求的直角坐標和 l的直角坐標方程;
(2)把曲線上各點的橫坐標伸長為原來的倍,縱坐標伸長為原來的倍,得到曲線,為上動點,求中點到直線距離的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在梯形中,,點在線段上,且滿足,將沿翻折,使翻折后的二面角的余弦值為,如圖2.
(1)求證:;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)和函數(shù).
(1)若曲線在處的切線過點,求實數(shù)的值;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若不等式對于任意的恒成立,求實數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知邊長為2的菱形ABCD,其中∠BAD=120°,AE∥CF,CF⊥平面ABCD,,.
(1)求證:平面BDE⊥平面BDF;
(2)求二面角D﹣EF﹣B的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正實數(shù)a,b,c滿足a3+b3+c3=1.
(Ⅰ)證明:a+b+c≥(a2+b2+c2)2;
(Ⅱ)證明:a2b+b2c+c2a≤1.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com