已知直線l:2x-3y+1=0,點(diǎn)A(-1,-2).求:
(1)點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A′的坐標(biāo);
(2)直線m:3x-2y-6=0關(guān)于直線l的對(duì)稱(chēng)直線m′的方程;
(3)直線l關(guān)于點(diǎn)A(-1,-2)對(duì)稱(chēng)的直線l′的方程.
解 (1)設(shè)A′(x,y),再由已知
解得
∴A′.
(2)在直線m上取一點(diǎn),如M(2,0),則M(2,0)關(guān)于直線l的對(duì)稱(chēng)點(diǎn)必在m′上.
設(shè)對(duì)稱(chēng)點(diǎn)為M′(a,b),
則
解得M′.
設(shè)m與l的交點(diǎn)為N,則由得N(4,3).
又∵m′經(jīng)過(guò)點(diǎn)N(4,3),
∴由兩點(diǎn)式得直線方程為9x-46y+102=0.
(3)設(shè)P(x,y)為l′上任意一點(diǎn),
則P(x,y)關(guān)于點(diǎn)A(-1,-2)的對(duì)稱(chēng)點(diǎn)為
P′(-2-x,-4-y),
∵P′在直線l上,
∴2(-2-x)-3(-4-y)+1=0,
即2x-3y-9=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知點(diǎn)在圓直徑的延長(zhǎng)線上,切圓于點(diǎn),是的平分線交于點(diǎn),交于點(diǎn).
(Ⅰ)求的度數(shù);(Ⅱ)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
經(jīng)過(guò)P(0,-1)作直線l,若直線l與連接A(1,-2),B(2,1)的線段總有公共點(diǎn),求直線l的傾斜角α的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知直線l過(guò)點(diǎn)M(2,1),且分別與x軸、y軸的正半軸交于A,B兩點(diǎn),O為原點(diǎn),是否存在使△ABO面積最小的直線l?若存在,求出直線l的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
求經(jīng)過(guò)直線l1:3x+2y-1=0和l2:5x+2y+1=0的交點(diǎn),且垂直于直線l3:3x-5y+6=0的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
當(dāng)0<k<時(shí),直線l1:kx-y=k-1與直線l2:ky-x=2k的交點(diǎn)在( ).
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
設(shè)兩條直線的方程分別為x+y+a=0和x+y+b=0,已知a,b是關(guān)于x的方程x2+x+c=0的兩個(gè)實(shí)數(shù)根,且0≤c≤,則這兩條直線之間的距離的最大值和最小值分別為( ).
A., B., C., D.,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com