國慶期間襄陽某體育用品專賣店抓住商機大量購進某特許商品進行銷售,該特許產(chǎn)品的成本為20元/個,每日的銷售量y(單位:個)與單價x(單位:元)之間滿足關(guān)系式y(tǒng)=
a
x-20
+4(x-50)2
,(其中20<x<50,a為常數(shù)).當銷售價格為40元/個時,每日可售出該商品401個.
(1)求a的值及每日銷售該特許產(chǎn)品所獲取的總利潤L(x);
(2)試確定單價x的值,使所獲得的總利潤L(x)最大.
考點:利用導數(shù)求閉區(qū)間上函數(shù)的最值
專題:計算題,應(yīng)用題,導數(shù)的綜合應(yīng)用
分析:(1)由題意401=
a
40-20
+4•(40-50)2,從而求出參數(shù)值,再寫出總利潤L(x)即可;
(2)化簡L(x)=4x3-480x2+18000x-199980,求導L′(x)=12(x-30)(x-50),討論其正負從而確定單調(diào)性,從而求最值.
解答: 解:(1)∵y=
a
x-20
+4(x-50)2
,
∴401=
a
40-20
+4•(40-50)2,
解得,a=20;
∴y=
20
x-20
+4(x-50)2

則每日銷售該特許產(chǎn)品所獲取的總利潤
L(x)=y(x-20)=(
20
x-20
+4(x-50)2
)(x-20)=20+4(x-20)•(x-50)2,(20<x<50)
(2)由L(x)=20+4(x-20)•(x-50)2=4x3-480x2+18000x-199980,
L′(x)=12x2-960x+18000=12(x-30)(x-50),
則當x∈(20,30)時,L′(x)>0,L(x)為增函數(shù);
當x∈(30,50)時,L′(x)<0,L(x)為減函數(shù);
則當x=30時,Lmax(x)=16020.
即當銷售單價為30元/個時,
所獲得的總利潤最大,為16020元.
點評:本題考查了將實際問題轉(zhuǎn)化為數(shù)學問題的能力及導數(shù)的綜合應(yīng)用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|≤
π
2
)的部分圖象如圖所示,則函數(shù)y=f(x)的表達式是( 。
A、f(x)=2sin(2x-
π
3
)
B、f(x)=2sin(2x+
π
3
)
C、f(x)=2sin(2x+
3
)
D、f(x)=2sin(x+
π
12
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設(shè)AD是△ABC的角平分線,AD交△ABC的外接圓與點E.求證:AB•AC=AD•AE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

證明函數(shù)f(x)=x+
1
x
在(-1,0)上是減少的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某工廠共有10臺機器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術(shù)水平等因素限制,會產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗知道,若每臺機器產(chǎn)生的次品數(shù)P(萬件)與每臺機器的日產(chǎn)量x(萬件)(4≤x≤10)之間滿足關(guān)系:P=
1
10
x2-
77
15
lnx+3
.已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每產(chǎn)生1萬件次品將虧損1萬元.(利潤=盈利-虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤y(萬元)表示為x的函數(shù);
(2)當每臺機器的日產(chǎn)量x(萬件)為多少時所獲得的利潤最大,最大利潤為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解關(guān)于x的不等式|
3x
x2-4
|≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)圓柱的表面積為S,當圓柱體積最大時,圓柱的高為( 。
A、
S
B、
3πS
C、
6πS
D、3π
6πS

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)+b的圖象如圖,則f(x)的解析式與S=f(0)+f(1)+f(2)+…+f(2010)的值分別為( 。
A、f(x)=
1
2
sin2πx+1,S=2010
B、f(x)=sin
π
2
x+1,S=2011
1
2
C、f(x)=
1
2
sin
π
2
x+1,S=2010
1
2
D、f(x)=
1
2
sin
π
2
x+1,S=2011

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ln(x2-1)-x,試判斷f(x)的單調(diào)性并說明理由.

查看答案和解析>>

同步練習冊答案