某工廠共有10臺機(jī)器,生產(chǎn)一種儀器元件,由于受生產(chǎn)能力和技術(shù)水平等因素限制,會產(chǎn)生一定數(shù)量的次品.根據(jù)經(jīng)驗知道,若每臺機(jī)器產(chǎn)生的次品數(shù)P(萬件)與每臺機(jī)器的日產(chǎn)量x(萬件)(4≤x≤10)之間滿足關(guān)系:P=
1
10
x2-
77
15
lnx+3
.已知每生產(chǎn)1萬件合格的元件可以盈利2萬元,但每產(chǎn)生1萬件次品將虧損1萬元.(利潤=盈利-虧損)
(1)試將該工廠每天生產(chǎn)這種元件所獲得的利潤y(萬元)表示為x的函數(shù);
(2)當(dāng)每臺機(jī)器的日產(chǎn)量x(萬件)為多少時所獲得的利潤最大,最大利潤為多少?
考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:計算題,應(yīng)用題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)由題意得,所獲得的利潤為y=10[2(x-P)-P]=10(2x-3P),將P=
1
10
x2-
77
15
lnx+3
代入化簡即可;
(2)求導(dǎo)y′=-6x+20+
154
x
=
-6x2+20x+154
x
=-
2(x-7)(3x+11)
x
,由導(dǎo)數(shù)確定單調(diào)性再求最值.
解答: 解:(1)由題意得,
所獲得的利潤為y=10[2(x-P)-P]=10(2x-3P),
又由P=
1
10
x2-
77
15
lnx+3
得,
即y=-3x2+20x+154lnx-90,(4≤x≤10)
(2)由(1)知,
y′=-6x+20+
154
x
=
-6x2+20x+154
x
=-
2(x-7)(3x+11)
x
,
∴當(dāng)4≤x<7時,y'>0,函數(shù)在[4,7]上為增函數(shù);
當(dāng)7<x≤10時,y'<0,函數(shù)在[6,10]上為減函數(shù),
∴當(dāng)x=7時,函數(shù)取得極大值,且為最大值
,最大利潤為154ln7-97(萬元).
即:當(dāng)每臺機(jī)器的日產(chǎn)量為7萬件時所獲得的利潤最大,最大利潤為154ln7-97萬元.
點(diǎn)評:本題考查了實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題的能力及導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(
1
3
)x
,x∈[-1,1],函數(shù)g(x)=f2(x)-2af(x)+3的最小值為h(a).
(1)求h(a)的表達(dá)式.    
(2)是否存在實(shí)數(shù)m,n同時滿足以下條件:①m>n>3; ②當(dāng)h(a)的定義域為[m,n]時,值域為[n2,m2],若存在,求出m,n的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)在(1,+∞)上為增函數(shù)的是(  )
A、y=-|x-1|
B、y=x+
2
x
C、y=
3x+1
x+1
D、y=x(2-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx+ax2-1(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)a=1,若不等式f(1+x)+f(1-x)-m<0對任意的0<x<1恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是R上的奇函數(shù),且x>0時,f(x)=2x,則x<0時,f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

國慶期間襄陽某體育用品專賣店抓住商機(jī)大量購進(jìn)某特許商品進(jìn)行銷售,該特許產(chǎn)品的成本為20元/個,每日的銷售量y(單位:個)與單價x(單位:元)之間滿足關(guān)系式y(tǒng)=
a
x-20
+4(x-50)2
,(其中20<x<50,a為常數(shù)).當(dāng)銷售價格為40元/個時,每日可售出該商品401個.
(1)求a的值及每日銷售該特許產(chǎn)品所獲取的總利潤L(x);
(2)試確定單價x的值,使所獲得的總利潤L(x)最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)定義域是{x|x≠
k
2
,k∈Z,x∈R},且f(x)+f(2-x)=0,f(x+1)=-
1
f(x)
,當(dāng)
1
2
<x<1時,f(x)=3x
(1)證明:f(x)為奇函數(shù);
(2)求f(x)在(-1,-
1
2
)
上的表達(dá)式;
(3)是否存在正整數(shù)k,使得x∈(2k+
1
2
,2k+1)
時,log3f(x)>x2-kx-2k有解,若存在求出k的值,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如直線l1、l2的斜率是二次方程x2-4x+1=0的兩根,那么l1與l2的夾角是(  )
A、
π
3
B、
π
4
C、
π
6
D、
π
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x≤0時,f(x)=x2+2x.
(1)寫出函數(shù)f(x),x∈R的解析式;
(2)若函數(shù)g(x)=f(x)-2ax+2,x∈[1,2],求函數(shù)g(x)的最小值h(a).

查看答案和解析>>

同步練習(xí)冊答案