函數(shù)y=(
1
2
2x+2×(
1
2
x (x≤-1)的值域是
 
考點:二次函數(shù)在閉區(qū)間上的最值,函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令t=(
1
2
)x
,將函數(shù)換元為一元二次函數(shù)y=t2+2t,根據(jù)一元二次函數(shù)的單調(diào)區(qū)間直接求最值即可
解答: 解:∵y=(
1
2
2x+2×(
1
2
x(x≤-1),令(
1
2
)x
=t,則t∈[2,+∞),∴原函數(shù)化為y=t2+2t=(t+1)2-1(t≥2)在[2,+∞)上是遞增函數(shù),∴y最小值=y(2)=8,故函數(shù)的值域是[8.+∞)
故答案為:[8.+∞)
點評:本題考查復(fù)合函數(shù)的值域問題,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足x+4y=40且x,y∈R+,則lgx+lgy的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=lnx在點(e,1)處的切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}中,a1=1,a2=2,且an+2-an=1+(-1)n(n∈N+).
(Ⅰ)令bn=a2n,求證{bn}是等差數(shù)列,并求{bn}的通項公式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四面體ABCD中,點F在CD上,點E在AD上,且DF:FC=DE:EA=2:3.證明:
(1)EF∥平面ABC;
(2)直線BD⊥直線EF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l與直線y=1,直線x=5分別交于P,Q兩點,PQ中點為M(1,-1),則直線l的斜率是( 。
A、-
1
2
B、
1
2
C、2
D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的母線長為2,母線與旋轉(zhuǎn)軸所成的角為30°,則該圓錐的表面積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
x-  
1
2
,x>0
-2,x=0
(x+3)
1
2
,x<0
且b=f(f(f(0))),若y=xa2-4a-b是偶函數(shù),且在(0,+∞)內(nèi)是減函數(shù),則整數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(3+2x-x2)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

同步練習冊答案