【題目】某學(xué)校近幾年來(lái)通過(guò)書(shū)香校園主題系列活動(dòng),倡導(dǎo)學(xué)生整本閱讀紙質(zhì)課外書(shū)籍.下面的統(tǒng)計(jì)圖是該校2013年至2018年紙質(zhì)書(shū)人均閱讀量的情況,根據(jù)統(tǒng)計(jì)圖提供的信息,下列推斷不合理的是(

A.2013年到2016年,該校紙質(zhì)書(shū)人均閱讀量逐年增長(zhǎng)

B.2013年至2018年,該校紙質(zhì)書(shū)人均閱讀量的中位數(shù)是46.7

C.2013年至2018年,該校紙質(zhì)書(shū)人均閱讀量的極差是45.3

D.2013年至2018年,該校后三年紙質(zhì)書(shū)人均閱讀量總和是前三年紙質(zhì)書(shū)人均閱讀量總和的2

【答案】D

【解析】

對(duì)于,根據(jù)統(tǒng)計(jì)圖得到四個(gè)數(shù)據(jù),觀察變化趨勢(shì)可得答案;對(duì)于,根據(jù)統(tǒng)計(jì)圖得到六個(gè)數(shù)據(jù),按照從小到大的順序排成一列,根據(jù)中位數(shù)的定義,計(jì)算可得答案;對(duì)于,使用六個(gè)數(shù)據(jù)中的最大值減去最小值可得答案;對(duì)于,通過(guò)計(jì)算比較可得答案.

對(duì)于,根據(jù)統(tǒng)計(jì)圖分析可知,從2013年到2016年,該校紙質(zhì)書(shū)人均閱讀量分別是:15.538.5,43.3,58.4是逐年增長(zhǎng)的,故是合理的;

對(duì)于2013年至2018年,該校紙質(zhì)書(shū)人均閱讀量按從小到大的順序排列為:15.5,38.543.3,50.158.4,60.8,其中位數(shù)為本,故是合理的;

對(duì)于,因?yàn)樽畲箝喿x量為本,最小閱讀量為本,所以極差為本,故是合理的;

對(duì)于,2013年至2018年,該校后三年紙質(zhì)書(shū)人均閱讀量總和為本,前三年紙質(zhì)書(shū)人均閱讀量總和為本,, 故是不合理的.

故選:D.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】時(shí)至21世紀(jì).環(huán)境污染已經(jīng)成為世界各國(guó)面臨的一大難題,其中大氣污染是目前城市急需應(yīng)對(duì)的一項(xiàng)課題.某市號(hào)召市民盡量減少開(kāi)車(chē)出行以綠色低碳的出行方式支持節(jié)能減排.原來(lái)天天開(kāi)車(chē)上班的王先生積極響應(yīng)政府號(hào)召,準(zhǔn)備每天從騎自行車(chē)和開(kāi)小車(chē)兩種出行方式中隨機(jī)選擇一種方式出行.從即日起出行方式選擇規(guī)則如下:第一天選擇騎自行車(chē)方式上班,隨后每天用一次性拋擲6枚均勻硬幣的方法確定出行方式,若得到的正面朝上的枚數(shù)小于4,則該天出行方式與前一天相同,否則選擇另一種出行方式.

1)求王先生前三天騎自行車(chē)上班的天數(shù)X的分布列;

2)由條件概率我們可以得到概率論中一個(gè)很重要公式——全概率公式.其特殊情況如下:如果事件相互對(duì)立并且,則對(duì)任一事件B.設(shè)表示事件n天王先生上班選擇的是騎自行車(chē)出行方式的概率.

①用表示;

②王先生的這種選擇隨機(jī)選擇出行方式有沒(méi)有積極響應(yīng)該市政府的號(hào)召,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】向量集合,對(duì)于任意,以及任意,都有,則稱(chēng)為“類(lèi)集”,現(xiàn)有四個(gè)命題:

①若為“類(lèi)集”,則集合也是“類(lèi)集”;

②若,都是“類(lèi)集”,則集合也是“類(lèi)集”;

③若都是“類(lèi)集”,則也是“類(lèi)集”;

④若都是“類(lèi)集”,且交集非空,則也是“類(lèi)集”.

其中正確的命題有________(填所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的方程為,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.

1)求直線l的直角坐標(biāo)方程;

2)已知P是曲線C上的一動(dòng)點(diǎn),過(guò)點(diǎn)P作直線交直線于點(diǎn)A,且直線與直線l的夾角為45°,若的最大值為6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的玫瑰花做垃圾處理.

)若花店一天購(gòu)進(jìn)17枝玫瑰花,求當(dāng)天的利潤(rùn)y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.

)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購(gòu)進(jìn)17枝玫瑰花,求這100天的日利潤(rùn)(單位:元)的平均數(shù);

(ii)若花店一天購(gòu)進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤(rùn)不少于75元的概率.

(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡(jiǎn)單題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著資本市場(chǎng)的強(qiáng)勢(shì)進(jìn)入,互聯(lián)網(wǎng)共享單車(chē)忽如一夜春風(fēng)來(lái),遍布了各級(jí)城市的大街小巷,為了解我市的市民對(duì)共享單車(chē)的滿意度,某調(diào)查機(jī)構(gòu)借助網(wǎng)絡(luò)進(jìn)行了問(wèn)卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機(jī)抽取了50人進(jìn)行分析.若得分低于60分,說(shuō)明不滿意,若得分不低于60分,說(shuō)明滿意,調(diào)查滿意度得分情況結(jié)果用莖葉圖表示如圖1

(Ⅰ)根據(jù)莖葉圖找出40歲以上網(wǎng)友中滿意度得分的眾數(shù)和中位數(shù);

(Ⅱ)根據(jù)莖葉圖完成下面列聯(lián)表,并根據(jù)以上數(shù)據(jù),判斷是否有的把握認(rèn)為滿意度與年齡有關(guān);

滿意

不滿意

合計(jì)

40歲以下

40歲以上

合計(jì)

(Ⅲ)先采用分層抽樣的方法從40歲及以下的網(wǎng)友中選取7人,再?gòu)倪@7人中隨機(jī)選出2人,將頻率視為概率,求選出的2人中至少有1人是不滿意的概率.

參考格式:,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為2,平面過(guò)正方體的一個(gè)頂點(diǎn),且與正方體每條棱所在直線所成的角相等,則該正方體在平面內(nèi)的正投影面積是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)當(dāng)時(shí),是什么曲線?

2)當(dāng)時(shí),求的公共點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求曲線的普通方程和的直角坐標(biāo)方程;

2)已知,曲線的交點(diǎn)A, B滿足(A為第一象限的點(diǎn)),求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案