如圖,矩形ABCD中,AB=3,BC=1,EF∥BC且AE=2EB,G為BC中點(diǎn),K為△ADF的外心,沿EF將矩形折成一個(gè)120°的二面角A-EF-B,則此時(shí)KG的長是
3
3
分析:先作出二面角A-EF-B的平面角,再利用余弦定理,即可求得結(jié)論.
解答:解:由題設(shè)知,△ADF為直角三角形,K為△ADF的外心,則K為AF的中點(diǎn),取EF中點(diǎn)H,連接KH、HG、KG.
∵K、H分別為FA,F(xiàn)E的中點(diǎn),∴KH∥AE.
又AE⊥EF,∴KH⊥EF.
又GH⊥EF,
∴∠KHG即為二面角A-EF-B的平面角,∴∠KHG=120°.
在△KHG中,KH=
1
2
AE=1,GH=1,
∴KG=
1+1-2×1×1×cos120°
=
3

故答案為:
3
點(diǎn)評:本題考查面面角,考查余弦定理的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABCD中,AB=
8
3
3
,BC=2,橢圓M的中心和準(zhǔn)線分別是已知矩形的中心和一組對邊所在直線,矩形的另一組對邊間的距離為橢圓的短軸長,橢圓M的離心率大于0.7.
(I)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求橢圓M的方程;
(II)過橢圓M的中心作直線l與橢圓交于P,Q兩點(diǎn),設(shè)橢圓的右焦點(diǎn)為F2,當(dāng)∠PF2Q=
3
時(shí),求△PF2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,AB=1,AD=2,M為AD的中點(diǎn),則
BM
BD
的值為
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A 若方程ax-x-a=0有兩個(gè)實(shí)數(shù)解,則a的取值范圍是
(1,+∞)
(1,+∞)

B 如圖,矩形ABCD中邊長AB=2,BC=1,E為BC的中點(diǎn),若F為正方形內(nèi)(含邊界)任意一點(diǎn),則
AE
AF
的最大值為
9
2
9
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD中,DC=
3
,AD=1,在DC上截取DE=1,將△ADE沿AE翻折到D'點(diǎn),當(dāng)D'在平面ABC上的射影落在AE上時(shí),四棱錐D'-ABCE的體積是
2
6
-
2
12
2
6
-
2
12
;當(dāng)D'在平面ABC上的射影落在AC上時(shí),二面角D'-AE-B的平面角的余弦值是
2-
3
2-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)如圖,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)問BC邊上是否存在Q點(diǎn),使
PQ
QD
,說明理由.
(2)問當(dāng)Q點(diǎn)惟一,且cos<
BP
,
QD
>=
10
10
時(shí),求點(diǎn)P的位置.

查看答案和解析>>

同步練習(xí)冊答案