7.以A(4,1,9),B(10,-1,6),C(2,4,3)為頂點的三角形的形狀為等腰直角三角形.

分析 利用數(shù)量積運算性質、模的計算公式即可得出.

解答 解:$\overrightarrow{AB}$=(6,-2,-3),$\overrightarrow{AC}$=(-2,3,-6),
∵$\overrightarrow{AB}•\overrightarrow{AC}$=-12-6+18=0,$|\overrightarrow{AB}|$=$\sqrt{{6}^{2}+(-2)^{2}+(-3)^{2}}$=7,同理可得|$\overrightarrow{AC}$|=7.
∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,$|\overrightarrow{AB}|$=|$\overrightarrow{AC}$|.
∴△ABC為等腰直角三角形.
故答案為:等腰直角三角形.

點評 本題考查了數(shù)量積運算性質、模的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知關于x的不等式ax2-bx+3>0的解集為(-3,1)
(Ⅰ)求實數(shù)a,b的值;
(Ⅱ)解關于x的不等式:${log_b}({2x-1})≤\frac{1}{2^a}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.p:$\left\{\begin{array}{l}a>2\;,\;\;\\ b=3\;.\end{array}\right.$是q:$\left\{\begin{array}{l}a+b>5\;,\;\;\\ ab>6.\end{array}\right.$成立的(  )
A.充分非必要條件B.必要非充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在程序框圖中,已知:${f_0}(x)=x{e^x}$,則輸出的是2012ex+xex

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.①若銳角$α、β滿足cosα>sinβ,則α+β<\frac{π}{2}$;
②f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),若$θ∈(\frac{π}{4},\frac{π}{2})$,則f(sinθ)>f(cosθ);
③函數(shù)f(x)=lnx+3x-6的零點只有1個且屬于區(qū)間(1,2);
其中正確的序號為①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=x2+ax-lnx在[1,2]上是減函數(shù),則實數(shù)a的取值范圍是( 。
A.(-∞,-1]B.$(-∞,-\frac{7}{2}]$C.$[-\frac{7}{2},-1)$D.$[-\frac{7}{2},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.下列說法中正確的是(  )
A.命題“?x∈R,x2-x≤0”的否定是“?x∈R,x2-x≥0”
B.命題“p∧q為真”是命題“p∨q為真”的必要不充分條件
C.設x,y∈R,“若x+y≠4,則x≠1或y≠3”是假命題
D.設a,b,m∈R,“若am2≤bm2,則a≤b”的否命題為真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知x=-2是函數(shù)f(x)=-x3-2x2+ax一個極值點.
(1)求實數(shù)a的值;
(2)若x∈[-3,3],求函數(shù)f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,則$\overrightarrow{a}$•$\overrightarrow$=-3.

查看答案和解析>>

同步練習冊答案