已知命題p:函數(shù)y=2x-2-x在R上為減函數(shù);命題q:函數(shù)y=2x+2-x在R上為增函數(shù);則下列命題中是真命題的是( )
A.p∧q
B.p∨q
C.(┐p)∧q
D.(┐p)∨q
【答案】分析:由指數(shù)函數(shù)的性質可知函數(shù)y=2x-2-x在R上為增函數(shù);故p為假命題,¬p為真命題;函數(shù)y=2x+2-x在(-∞,0)上位減函數(shù),在(0,+∞)上為增函數(shù);故q為假命題,¬q為真命題,結合選項可判斷
解答:解:由指數(shù)函數(shù)的性質可知函數(shù)y=2x-2-x在R上為增函數(shù);故p為假命題,¬p為真命題
函數(shù)y=2x+2-x在(-∞,0)上位減函數(shù),在(0,+∞)上為增函數(shù);故q為假命題,¬q為真命題
∴p∧q為假,pvq為假,¬p∧q為假,¬pvq為真
故選D
點評:本題以知識函數(shù)的單調性的應用為載體,主要考查了復合命題的真假關系的判斷.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=lgx2的定義域是R,命題q:函數(shù)y=(
13
)
x
的值域是正實數(shù)集,給出命題:①p或q;②p且q;③非p;④非q.其中真命題個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=x2+2(a2-a)x+a4-2a3在[-2,+∞)上單調遞增.q:關于x的不等式ax2-ax+1>0解集為R.若p∧q假,p∨q真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:函數(shù)y=loga(1-2x)在定義域上單調遞增,命題Q:不等式(a-2)x2+2(a-2)x-4<0對任意實數(shù)x恒成立,若P∨Q是真命題,P∧Q是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:函數(shù)y=log 0.5(x2+2x+a)的值域為R,命題q:函數(shù)y=(x-a)2在(2,+∞)上是增函數(shù).若p或q為真命題,p且q為假命題,則實數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:函數(shù)y=lg(ax2-x+
a16
)定義域為R; 命題Q:函數(shù)y=(5-2a)x為增函數(shù);若“p∨q”為真命題,“p∧q:”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案