【題目】如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點(diǎn),將△ADE沿直線(xiàn)DE翻轉(zhuǎn)成△A1DE.若M為線(xiàn)段A1C的中點(diǎn),則在△ADE翻折過(guò)程中: ①|(zhì)BM|是定值;
②點(diǎn)M在某個(gè)球面上運(yùn)動(dòng);
③存在某個(gè)位置,使DE⊥A1C;
④存在某個(gè)位置,使MB∥平面A1DE.
其中正確的命題是 .
【答案】①②④
【解析】解:取A1D的中點(diǎn)N,連結(jié)MN,EN, 則MN為△A1CD的中位線(xiàn),∴MN CD,
∵E是矩形ABCD的邊AB的中點(diǎn),∴BE CD,
∴MN BE,
∴四邊形MNEB是平行四邊形,
∴BM EN,
∴BM為定值,M在以B為球心,以BM為半徑的球面上,故①正確,②正確;
又NE平面A1DE,BM平面A1DE,
∴BM∥平面A1DE,故④正確;
由勾股定理可得DE=CE=2 ,∴DE2+CE2=CD2 ,
∴DE⊥CE,若DE⊥A1C,又A1C∩CE=C,
∴DE⊥平面A1CE,又A1E平面A1CE,
∴DE⊥A1E,而這與∠AED=45°矛盾.故③錯(cuò)誤.
所以答案是:①②④.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用棱錐的結(jié)構(gòu)特征,掌握側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工藝品廠(chǎng)要設(shè)計(jì)一個(gè)如圖Ⅰ所示的工藝品,現(xiàn)有某種型號(hào)的長(zhǎng)方形材料如圖Ⅱ所示,其周長(zhǎng)為4m,這種材料沿其對(duì)角線(xiàn)折疊后就出現(xiàn)圖Ⅰ的情況.如圖,ABCD(AB>AD)為長(zhǎng)方形的材料,沿AC折疊后AB'交DC于點(diǎn)P,設(shè)△ADP的面積為
S2 , 折疊后重合部分△ACP的面積為S1 .
(Ⅰ)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫(xiě)出x的取值范圍;
(Ⅱ)求面積S2最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
(Ⅲ)求面積(S1+2S2)最大時(shí),應(yīng)怎樣設(shè)計(jì)材料的長(zhǎng)和寬?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
8430 8215 7453 7446 6754
7638 6834 6460 6830 9860
8753 9450 9860 7290 7850
對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)
組別 | 步數(shù)分組 | 頻數(shù) |
A | 5500≤x<6500 | 2 |
B | 6500≤x<7500 | 10 |
C | 7500≤x<8500 | m |
D | 8500≤x<9500 | 2 |
E | 9500≤x<10500 | n |
(Ⅰ)寫(xiě)出m,n的值,并回答這20名“微信運(yùn)動(dòng)”團(tuán)隊(duì)成員一天行走步數(shù)的中位數(shù)落在哪個(gè)組別;
(Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 , ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 與 的大小;(只需寫(xiě)出結(jié)論)
(Ⅲ)從上述A,E兩個(gè)組別的數(shù)據(jù)中任取2個(gè)數(shù)據(jù),記這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值為ξ,求ξ的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=cos2x圖象上所有點(diǎn)向右平移 個(gè)單位長(zhǎng)度后得到函數(shù)g(x)的圖象,若g(x)在區(qū)間[0,a]上單調(diào)遞增,則實(shí)數(shù)a的最大值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=x2﹣bx+c滿(mǎn)足f(1+x)=f(1﹣x)且f(0)=3,則f(bx)和f(cx)的大小關(guān)系是( )
A.f(bx)≤f(cx)
B.f(bx)≥f(cx)
C.f(bx)>f(cx)
D.大小關(guān)系隨x的不同而不同
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+ +alnx(x>0,a為常數(shù)).
(1)討論函數(shù)g(x)=f(x)﹣x2的單調(diào)性;
(2)對(duì)任意兩個(gè)不相等的正數(shù)x1、x2 , 求證:當(dāng)a≤0時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面向量 , , 滿(mǎn)足| |=| |= ,| |=1,若( ﹣ )( ﹣ )=0,則| ﹣ |的取值范圍是( )
A.[1,2]
B.[2,4]
C.[ ﹣1, +1]
D.[ ﹣1, +1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l:x+ay﹣1=0是圓C:x2+y2﹣4x﹣2y+1=0的一條對(duì)稱(chēng)軸,過(guò)點(diǎn)A(﹣4,a)作圓C的兩條切線(xiàn),切點(diǎn)分別為B、D,則直線(xiàn)BD的方程為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com