求函數(shù)
的最大值 和最小值及相應的
的值.
即當x=8時,
;當t=1時,即當x=2時,
令
,
當t=3時,即當x=8時,
;當t=1時,即當x=2時,
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)函數(shù)
。
(1)求
的周期;(2)解析式及
在
上的減區(qū)間;
(3)若
,
,求
的值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(Ⅰ)當
時,判斷函數(shù)
在定義域上的單調(diào)性。
(Ⅱ)若函數(shù)
有極值點,求b的取值范圍及
的極值點。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
若
(1)設函數(shù)
處的切線為
,若
與圓
相切,求a的值
(2)求函數(shù)
的單調(diào)區(qū)間
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(1)當
時,求所有使
成立的
的值;
(2)當
時,求函數(shù)
在閉區(qū)間
上的最小值;
(3)試討論函數(shù)
的圖像與直線
的交點個數(shù)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
討論函數(shù)f(x)=x+
(a>0)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
和點
,過點
作曲線
的兩條切線
、
,切點分別為
、
.
(1)求證:
為關于
的方程
的兩根;
(2)設
,求函數(shù)
的表達式;
(3)在(2)的條件下,若在區(qū)間
內(nèi)總存在
個實數(shù)
(可以相同),使得不等,則m的最大值,
為正整數(shù)
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知函數(shù)
是R上的偶函數(shù),且在區(qū)間
上是增函數(shù).令
,則
查看答案和解析>>