6.計(jì)算:(log43+log83)(log32+log92)=( 。
A.$\frac{5}{4}$B.$\frac{5}{2}$C.5D.15

分析 化簡(jiǎn)(log43+log83)(log32+log92)=($\frac{1}{2}$log23+$\frac{1}{3}$log23)(log32+$\frac{1}{2}$log32),且log23•log32=1,從而解得.

解答 解:(log43+log83)(log32+log92)
=($\frac{1}{2}$log23+$\frac{1}{3}$log23)(log32+$\frac{1}{2}$log32)
=$\frac{5}{6}$log23•$\frac{3}{2}$log32
=$\frac{5}{4}$;
故選:A.

點(diǎn)評(píng) 本題考查了對(duì)數(shù)的化簡(jiǎn)與運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.一個(gè)游泳池長(zhǎng)100m,甲、乙兩人分別在游泳池相對(duì)兩邊同時(shí)朝對(duì)面游泳,甲的速度是2m/s,乙的速度是1m/s,若不計(jì)算轉(zhuǎn)向時(shí)間,則從開始起到5min止,他們相遇的次數(shù)為( 。
A.6B.5C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知e為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率,點(diǎn)(1,e)和$(e\;,\frac{{\sqrt{3}}}{2})$都在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)M(2,0)的直線l與橢圓相交于A、B點(diǎn),在直線x+y-1=0存在點(diǎn)P,使得$\overrightarrow{OA}+\overrightarrow{OB}=\frac{4}{3}\overrightarrow{OP}$(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.不等式|x-1|+|x+1|≤3的解集為[-$\frac{3}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=2cosx(\sqrt{3}sinx+cosx)+2$
(Ⅰ)求函數(shù)f(x)的最小正周期與單調(diào)遞減區(qū)間;
(Ⅱ)求函數(shù)f(x)在區(qū)間$[0,\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列說法中,不正確的是(  )
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“?x0∈R,x02-x0>0”的否定是:“?x∈R,x2-x≤0”
C.命題“p或q”為真命題,則命題p和q命題均為真命題
D.“x>3”是“x>2”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),對(duì)任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[-2,0]時(shí),f(x)=($\frac{1}{2}$)x-1,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有三個(gè)不同的實(shí)數(shù)根,則a的取值范圍是( 。
A.($\sqrt{3}$,2)B.($\root{3}{4}$,2)C.[$\root{3}{4}$,2)D.($\root{3}{4}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)是定義在R上的奇函數(shù),若x1,x2∈R,則“x1+x2=0”是“f(x1)+f(x2)=0”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知(x+y)+(x-2y)i=2-4i,求實(shí)數(shù)x,y.

查看答案和解析>>

同步練習(xí)冊(cè)答案