11.若定義在R上的函數(shù)滿足f(-x)=f(x),f(4-x)=f(x),且當(dāng)x∈[0,2]時,f(x)=$\sqrt{4-{x^2}}$,則函數(shù)H(x)=|xex|-f(x)在區(qū)間[-6,2]上的零點(diǎn)個數(shù)為(  )
A.2B.4C.6D.8

分析 求出函數(shù)f(x)=xex的導(dǎo)函數(shù),由導(dǎo)函數(shù)等于0求出x的值,以求出的x的值為分界點(diǎn)把原函數(shù)的定義域分段,以表格的形式列出導(dǎo)函數(shù)在各區(qū)間段內(nèi)的符號及原函數(shù)的增減性,從而得到函數(shù)的單調(diào)區(qū)間及極值點(diǎn),把極值點(diǎn)的坐標(biāo)代入原函數(shù)求極值.然后判斷y=|xex|的極值與單調(diào)性,然后推出零點(diǎn)的個數(shù)

解答 解:定義在R上的函數(shù)f(x)滿足f(-x)=f(x),f(2-x)=f(x),
∴函數(shù)是偶函數(shù),關(guān)于x=1對稱,
∵函數(shù)f(x)=xex的定義域?yàn)镽,
f′(x)=(xex)′=x′ex+x(ex)′=ex+xex
令f′(x)=ex+xex=ex(1+x)=0,解得:x=-1.
列表:

x(-∞,-1)-1(-1,+∞)
f′(x)-0+
f(x)極小值
由表可知函數(shù)f(x)=xex的單調(diào)遞減區(qū)間為(-∞,-1),單調(diào)遞增區(qū)間為(-1,+∞).
當(dāng)x=-1時,函數(shù)f(x)=xex的極小值為f(-1)=-$\frac{1}{e}$.
y=|xex|,在x=-1時取得極大值:$\frac{1}{e}$,x∈(0,+∞)是增函數(shù),
x<0時有3個交點(diǎn),x>0時有1個交點(diǎn)
共有4個交點(diǎn).
故選:B.

點(diǎn)評 題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,在求出導(dǎo)函數(shù)等于0的x值后,借助于表格分析能使解題思路更加清晰,此題是中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的離心率等于2,它的焦點(diǎn)到漸近線的距離等于1,則該雙曲線的方程為$\frac{{x}^{2}}{\frac{1}{3}}-{y}^{2}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.根據(jù)如圖所示的偽代碼,若輸入的x值為-1,則輸出的y值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知F1、F2分別為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),A1、A2分別為其左、右頂點(diǎn),過F2且與x軸垂直的直線l與橢圓相交于M、N兩點(diǎn).若四邊形A1MA2N的面積等于2,且滿足|$\overrightarrow{{A}_{1}{F}_{2}}$|=$\sqrt{2}$|$\overrightarrow{MN}$|+|$\overrightarrow{{A}_{2}{F}_{2}}$|.
(1)求此橢圓的方程;
(2)設(shè)⊙O的直徑為F1F2,直線l:y=kx+m與⊙O相切,并與橢圓交于不同的兩點(diǎn)P、Q,若$\overrightarrow{OP}$•$\overrightarrow{OQ}$=λ,且λ∈[$\frac{2}{3}$,$\frac{3}{4}$],求△POQ的面積S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知向量$\overrightarrow{m}$=(sinA,sinB),$\overrightarrow{n}$=(cosB,cosA),$\overrightarrow{m}$•$\overrightarrow{n}$=sin2C,且A,B,C分別為△ABC的三邊a,b,c所對的角.
(I)求角C的大。
(Ⅱ)若sinA,sinC,sinB成等差數(shù)列,且△ABC的面積為$9\sqrt{3}$,求c邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,結(jié)果是( 。
A.$\frac{65}{81}$B.$\frac{19}{27}$C.$\frac{5}{9}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某業(yè)余俱樂部由10名乒乓球隊員和5名羽毛球隊員組成,其中乒乓球隊員中有4名女隊員;羽毛球隊員中有2名女隊員,現(xiàn)采用分層抽樣方法(按乒乓球隊和羽毛球隊分層,在每一層內(nèi)采用簡單隨機(jī)抽樣)從這15人中共抽取3名隊員參加一項(xiàng)比賽.
(Ⅰ)求所抽取的3名隊員中乒乓球隊員、羽毛球隊員的人數(shù);
(Ⅱ)求從乒乓球隊抽取的隊員中至少有1名女隊員的概率;
(Ⅲ)記ξ為抽取的3名隊員中男隊員人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)向量$\overrightarrow a=(1,-2)$,$\overrightarrow b=(3,4)$,則向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線C1:y2=2x的焦點(diǎn)F是雙曲線C2:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一個頂點(diǎn),兩條曲線的一個交點(diǎn)為M,若|MF|=$\frac{3}{2}$,則雙曲線C2的離心率是( 。
A.$\sqrt{2}$B.$\frac{{\sqrt{17}}}{3}$C.$\frac{{2\sqrt{6}}}{3}$D.$\frac{{\sqrt{33}}}{3}$

查看答案和解析>>

同步練習(xí)冊答案