分析 先由$\left\{\begin{array}{l}{y=kx}\\{y=x-{x}^{2}}\end{array}\right.$得$\left\{\begin{array}{l}{x=1-k}\\{y=k-{k}^{2}}\end{array}\right.$,根據(jù)直線y=kx分拋物線y=x-x2與x軸所圍成圖形為面積相等的兩個部分得${∫}_{0}^{1-k}$[(x-x2)-kx]dx=$\frac{1}{2}$∫01(x-x2)dx,下面利用定積分的計算公式即可求得k值
解答 解:由$\left\{\begin{array}{l}{y=kx}\\{y=x-{x}^{2}}\end{array}\right.$得$\left\{\begin{array}{l}{x=1-k}\\{y=k-{k}^{2}}\end{array}\right.$,由題意得${∫}_{0}^{1-k}$[(x-x2)-kx]dx=$\frac{1}{2}$∫01(x-x2)dx,
解得$k=1-\root{3}{\frac{1}{2}}=1-\frac{\root{3}{4}}{2}$.
故答案為:1-$\frac{\root{3}{4}}{2}$.
點評 本題考查定積分的應用;研究平面圖形的面積的一般步驟是:(1)畫草圖;(2)解方程組,求出交點坐標;(3)確定被積函數(shù)及上、下限;(4)進行計算
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 4π | B. | 6π | C. | 8π | D. | 16π |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com