已知偶函數(shù)f(x)滿足f(x+2)=f(x),當(dāng)x∈(0,1)時(shí),f(x)=2x,則f(-
5
2
)=
 
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)的奇偶性與周期性即可得出.
解答: 解:∵偶函數(shù)f(x)滿足f(x+2)=f(x),
∴f(-
5
2
)=f(
5
2
)
=f(
1
2
)

∵當(dāng)x∈(0,1)時(shí),f(x)=2x,
f(
1
2
)
=2
1
2
=
2

f(-
5
2
)
=
2

故答案為:
2
點(diǎn)評(píng):本題考查了函數(shù)的奇偶性與周期性,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x2+ax+1,若f(|x|)有4個(gè)單調(diào)區(qū)間,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知“命題p:x≤m”是“命題q:x2+3x-4<0”成立的必要不充分條件,則實(shí)數(shù)m的取值范圍為
 
(用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)的反函數(shù)是y=g(x),如果f(ab)=f(a)+f(b),則有( 。
A、g(ab)=g(a)•g(b)
B、g(a+b)=g(a)+g(b)
C、g(a+b)=g(a)•g(b)
D、g(ab)=g(a)+g(b)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x2+102x+1
x2+1
,若f(a)=
2
3
,則f(-a)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四組中的f(x),g(x),表示同一個(gè)函數(shù)的是(  )
A、f(x)=1,g(x)=x0
B、f(x)=x-1,g(x)=
x2
x
-1
C、f(x)=x,g(x)=(
x
2
D、f(x)=|1-2x|,g(x)=
(2x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|mx2+2x+3=0}中有且只有一個(gè)元素,則m的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={2,3},則集合A的非空真子集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c為不全相等的正數(shù),求證:
a+c-b
b
+
a+b-c
c
+
b+c-a
a
>3.

查看答案和解析>>

同步練習(xí)冊(cè)答案