已知a,b為常數(shù)且a≠0,函數(shù)f(x)=ax2+bx,若f(2)=0且方程f(x)=x有等根.
(1)求函數(shù)f(x)的解析式及值域;
(2)是否存在實(shí)數(shù)m,n(m<n),使f(x)的定義域和值域分別為[m,n]和[2m,2n],若存在,求出m,n的值,若不存在,請說明理由.
考點(diǎn):函數(shù)與方程的綜合運(yùn)用,函數(shù)解析式的求解及常用方法,函數(shù)的零點(diǎn)與方程根的關(guān)系
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由于方程f(x)=x有等根,所以可求b=1,利用f(2)=0可求a=-
1
2
,故函數(shù)解析式可求,然后利用二次函數(shù)的性質(zhì)求解值域.
(2)利用函數(shù)的最大值可知f(x)在[m,n]上單調(diào)遞增,從而可建立方程組,故滿足條件的m,n存在.
解答: 解:(1)∵方程ax2+bx-x=0有等根,∴△=(b-1)2=0,得b=1.
∵f(2)=0,∴a=-
1
2

∴f(x)的解析式為f(x)=-
1
2
(x-1)2+
1
2
;
∵函數(shù)是二次函數(shù),-
1
2
(x-1)2+
1
2
1
2

∴函數(shù)的值域?yàn)椋海?span id="ggxr4wz" class="MathJye">-∞,
1
2
].
(2)∵f(x)=-
1
2
(x-1)2+
1
2
1
2
,∴2n≤
1
2
,∴n≤
1
4
,∴f(x)在[m,n]上單調(diào)遞增,
若滿足題設(shè)條件的m,n存在,則
f(m)=2m
f(n)=2n
,
m=-2
n=0
即這時(shí)定義域?yàn)閇-2,0],值域?yàn)閇-4,0].
由以上知滿足條件的m,n存在,m=-2,n=0.
點(diǎn)評(píng):本題主要考查函數(shù)與方程的綜合運(yùn)用,二次函數(shù)解析式的求法與運(yùn)用,涉及分類討論,轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-x2(x≥0).
(1)求函數(shù)y=f-1(x)的解析式;
(2)求函數(shù)y=f(x)與y=f-1(x)的圖象的公共點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,D是AB邊上的點(diǎn),且AD=
1
3
AB,連結(jié)CD.現(xiàn)隨機(jī)丟一粒豆子在△ABC內(nèi),則它落在陰影部分的概率是( 。
A、
1
4
B、
1
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個(gè)圓柱內(nèi)接于半徑為R的球,則此圓柱的最大體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知
a
、
b
,求作
a
-
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=lgx-sinx的零點(diǎn)個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:mx-y+1-m=0和圓C:x2+(y-1)2=5
(1)求證:不論m為何值,直線l與圓C總相交;
(2)設(shè)直線l與圓C的交點(diǎn)為A,B,若|AB|=
17
,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(
1
2
|x-1|的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)∅?A⊆{1,2,3,4},則符合條件的集合A的個(gè)數(shù)為
 

查看答案和解析>>

同步練習(xí)冊答案