在平面直角坐標(biāo)系xOy中,拋物線y=x2上異于坐標(biāo)原點(diǎn)O的兩不同動點(diǎn)A、B滿足AO⊥BO(如圖所示).
(1)求△AOB的重心C(即三角形三條中線的交點(diǎn))的軌跡方程;
(Ⅱ)△AOB的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.
∵OA⊥OB.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示是某幾何體的三視圖,其中正視圖是斜邊為2的直角三角形,側(cè)視圖是半徑為1的半圓,則該幾何體的體積是__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,過坐標(biāo)原點(diǎn)的一條直線與函數(shù)f(x)=的圖象交于P,Q兩點(diǎn),則線段PQ長的最小值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)直線l與橢圓=1相交于A、B兩點(diǎn),l又與雙曲線x2-y2=1相交于C、D兩點(diǎn),C、D三等分線段AB,求直線l的方程
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知點(diǎn)A(-2,0)、B(3,0),動點(diǎn)P(x,y)滿足=x2,則點(diǎn)P的軌跡是 ( )
A. 圓 B.橢圓 C.雙曲線 D.拋物線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓=1(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點(diǎn),滿足=2a,點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),點(diǎn)T在線段F2Q上,并且滿足·=0,||≠0.
(1)設(shè)x為點(diǎn)P的橫坐標(biāo),證明||=a+;
(Ⅱ)求點(diǎn)T的軌跡C的方程;
(Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△F1MF2的面積S=b2,若存在,求∠F1MF2的正切值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓C:+=1(a>b>0)的離心率為,橢圓C上任意一點(diǎn)到橢圓C兩個(gè)焦點(diǎn)的距離之和為6.
(1)求橢圓C的方程;
(2)設(shè)直線l:y=kx-2與橢圓C交于A,B兩點(diǎn),點(diǎn)P(0,1),且|PA|=|PB|,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知復(fù)數(shù)z1=3+4i,z2=t+i,,且是實(shí)數(shù),則實(shí)數(shù)t= ( )
A. B. C.- D.-
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com