(滿分16分)
已知函數(shù)).
(1)求函數(shù)的值域;
(2)判斷函數(shù)的奇偶性;
(3)用定義判斷函數(shù)的單調(diào)性;
(4)解不等式


(1)
(2)奇函數(shù),證明略
(3)函數(shù)上為單調(diào)增函數(shù)
(4)

解析(1)∵ ,………………………… 2分
,∴
∴函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/92/5/tvtgy2.gif" style="vertical-align:middle;" />………………………………4分
(2)證明:①, ………………………6分
∴函數(shù)為奇函數(shù)                          ………………………8分
(3)
在定義域中任取兩個(gè)實(shí)數(shù),且,       …………………………9分
            …………………………10分
,從而 …………………………11分
∴函數(shù)上為單調(diào)增函數(shù)               …………………………12分
(4)由(2)得函數(shù)為奇函數(shù),在R上為單調(diào)增函數(shù)
,
,           …………………………14分
∴原不等式的解集為            …………………………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù)的定義域?yàn)?0,1](為實(shí)數(shù)).
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵若函數(shù)在定義域上是減函數(shù),求的取值范圍;
⑶求函數(shù)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分16分)
設(shè)R,m,n都是不為1的正數(shù),函數(shù)
(1)若m,n滿足,請(qǐng)判斷函數(shù)是否具有奇偶性. 如果具有,求出相
應(yīng)的t的值;如果不具有,請(qǐng)說(shuō)明理由;
(2)若,且,請(qǐng)判斷函數(shù)的圖象是否具有對(duì)稱性. 如果具
有,請(qǐng)求出對(duì)稱軸方程或?qū)ΨQ中心坐標(biāo);若不具有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分14分)
已知函數(shù).
(Ⅰ) 討論的奇偶性;
(Ⅱ)判斷上的單調(diào)性并用定義證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(滿分16分)
某醫(yī)藥研究所開(kāi)發(fā)一種新藥,據(jù)檢測(cè),如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù))的圖象,且是常數(shù).

(1)寫(xiě)出服藥后y與x的函數(shù)關(guān)系式;
(2)據(jù)測(cè)定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個(gè)小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分14分)
已知函數(shù).
(1)當(dāng)時(shí),討論的單調(diào)性;
(2)設(shè)當(dāng)時(shí),若對(duì)任意,存在,使恒成立,求實(shí)數(shù)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分10分)
已知, 若在區(qū)間上的最大值為, 最小值為, 令.
(1) 求的函數(shù)表達(dá)式;
(2) 判斷的單調(diào)性, 并求出的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)設(shè)函數(shù)y=x+ax+bx+c的圖像,如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為–4,

(1)求a、b、c的值;       
(2)求函數(shù)的遞減區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題14分) (1) 證明函數(shù) f(x)= 在上是增函數(shù);
⑵求上的值域。

查看答案和解析>>

同步練習(xí)冊(cè)答案