【題目】設(shè)雙曲線的左頂點(diǎn)為D,且以點(diǎn)D為圓心的圓與雙曲線C分別相交于點(diǎn)A、B,如圖所示.

1)求雙曲線C的方程;

2)求的最小值,并求出此時(shí)圓D的方程;

3)設(shè)點(diǎn)P為雙曲線C上異于點(diǎn)AB的任意一點(diǎn),且直線PA、PB分別與x軸相交于點(diǎn)MN,求證:為定值(其中O為坐標(biāo)原點(diǎn)).

【答案】1;(2;(34.

【解析】

1)由圓心為,為雙曲線的左頂點(diǎn),解得,得到雙曲線C的方程.

2)設(shè),利用數(shù)量積運(yùn)算得到,再利用二次函數(shù)的性質(zhì)求解.

3)設(shè),得到直線PA的方程為:,令,得,同理,然后代入求解.

1)因?yàn)閳A的圓心為,且為左頂點(diǎn),

所以,

所以雙曲線C的方程.

2)設(shè),

因?yàn)辄c(diǎn)A在雙曲線上,

所以,

所以,

所以當(dāng),取得最小值,

此時(shí),又點(diǎn)A在圓上,所以,

所以圓D的方程.

3)設(shè),則直線PA的方程為:,

,得,同理,

又點(diǎn)AP在雙曲線上,

所以,

所以

所以為定值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線,經(jīng)過點(diǎn)的直線與該雙曲線交于兩點(diǎn).

1)若軸垂直,且,求的值;

2)若,且的橫坐標(biāo)之和為,證明:.

3)設(shè)直線軸交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形中,,點(diǎn),分別是,上的動(dòng)點(diǎn),將矩形沿所在的直線進(jìn)行隨意翻折,在翻折過程中直線與直線所成角的范圍(包含初始狀態(tài))為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備生產(chǎn)某種零件的性能,從該設(shè)備生產(chǎn)零件的流水線上隨機(jī)抽取100件零件作為樣本,測(cè)量其直徑后,整理得到下表:

直徑/

78

79

81

82

83

84

85

86

87

88

89

90

91

93

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計(jì)值.

(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進(jìn)行評(píng)判(表示相應(yīng)事件的頻率):

;②;③,評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙;若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為丁.試判斷設(shè)備的性能等級(jí).

(2)將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“次品”,將直徑小于等于的零件或直徑大于等于的零件認(rèn)定為是“突變品”,從樣本的“次品”中隨意抽取2件零件,求“突變品”個(gè)數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等比數(shù)列中,已知設(shè)數(shù)列的前n項(xiàng)和為,且

1)求數(shù)列通項(xiàng)公式;

2)證明:數(shù)列是等差數(shù)列;

3)是否存在等差數(shù)列,使得對(duì)任意,都有?若存在,求出所有符合題意的等差數(shù)列;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線與直線相切于點(diǎn),點(diǎn)關(guān)于軸對(duì)稱.

1)求拋物線的方程及點(diǎn)的坐標(biāo);

2)設(shè)軸上兩個(gè)不同的動(dòng)點(diǎn),且滿足,直線、與拋物線的另一個(gè)交點(diǎn)分別為,試判斷直線與直線的位置關(guān)系,并說(shuō)明理由.如果相交,求出的交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)2|x1||x2|.

(1)f(x)的最小值m;

(2)ab,c均為正實(shí)數(shù),且滿足abcm,求證:≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,動(dòng)圓與圓外切,且與直線相切,該動(dòng)圓圓心的軌跡為曲線.

1)求曲線的方程

2)過點(diǎn)的直線與拋物線相交于兩點(diǎn),拋物線在點(diǎn)A的切線與交于點(diǎn)N,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)[1,2]上有且僅有3個(gè)零點(diǎn),其圖象關(guān)于點(diǎn)和直線x對(duì)稱,給出下列結(jié)論:

②函數(shù)fx)在[0,1]上有且僅有3個(gè)極值點(diǎn);

③函數(shù)fx)在上單調(diào)遞增;

④函數(shù)fx)的最小正周期是2

其中所有正確結(jié)論的編號(hào)是(

A.②③B.①④C.②③④D.①②

查看答案和解析>>

同步練習(xí)冊(cè)答案