(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點(diǎn)E,使得BC//平面ADE,并證明你的結(jié)論.

(I)見解析;(II)過D作DE//BC,交SB于E

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖,三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn),平面ABC

(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的余弦值;
(Ⅲ)求點(diǎn)C到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在正三棱柱ABC—A1B1C1中,底面邊長(zhǎng)及側(cè)棱長(zhǎng)均為2,D是棱AB的中點(diǎn),
(1)求證;
(2)求異面直線AC1與B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)如圖,在中,上的高,沿折起,使 。
(Ⅰ)證明:平面ADB  ⊥平面BDC;
(Ⅱ)設(shè)E為BC的中點(diǎn),求AE與DB夾角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,幾何體是四棱錐,△為正三角形,.
(1)求證:
(2)若∠,M為線段AE的中點(diǎn),求證:∥平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在三棱錐中,、兩兩垂直,且,,點(diǎn)是棱的中點(diǎn).
(1)求異面直線所成角的余弦值;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正四棱柱中,設(shè),,
若棱上存在點(diǎn)滿足平面,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖4,在三棱柱中,底面是邊長(zhǎng)為2的正三角形,側(cè)棱長(zhǎng)為3,且側(cè)棱,點(diǎn)的中點(diǎn).

(1)求證:;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖所示,ABCD-A1B1C1D1是棱長(zhǎng)為6的正方體,E、F分別是棱AB、BC上的動(dòng)點(diǎn),且AE=BF.當(dāng)A1、E、F、C1共面時(shí),平面A1DE與平面C1DF所成二面角的余弦值為(  )

A.       B.         C.       D.

查看答案和解析>>

同步練習(xí)冊(cè)答案